Hung D, Knight SD, Woods R, Pinkner J & Hultgren S (1996). Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J 15:3792-3805.

Knight S, Mulvey M & Pinkner J (1997). Crystallization and preliminary X-ray diffraction studies of the FimC-FimH chaperone-adhesin complex from Escherichia coli. Acta Cryst D53:207-210.

Soto GE, Dodson KW, Ogg D, Liu C, Heuser J, Knight S, Kihlberg J, Jones CH & Hultgren SJ (1998). Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus. EMBO J 17:6155-6167.

Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ & Knight SD (1999). X-ray structure of the FimC-FimH Chaperone-Adhesin Complex from Uropathogenic E. coli. Science 285:1061-1066.

Hultgren SJ, Hung D & Knight S (1999). Periplasmic PapD-Like Chaperones in Bacteria: Structure and Function. In Molecular Biology of Chaperones and Folding Catalysts: Regulation, cellular functions and mechanisms. Bernd Bukau, ed., pp. 661-683, Harwood Academic Publishers, Amtserdam.

Hung DL, Knight SD & Hultgren SJ (1999). Probing conserved surfaces on PapD. Mol Microbiol 31:773-783.

Hung DL, Pinkner JS, Knight SD & Hultgren SJ (1999). Structural basis of chaperone self-capping in P pilus biogenesis. Proc Natl Acad Sci USA 96:8178-8183.

Knight SD (2000). RSPS version 4: a semi-interactive vector-search program for solving heavy-atom derivatives. Acta Cryst D56:42-47.

Knight SD, Berglund J & Choudhury D (2000). Bacterial adhesins: structural studies reveal chaperone function and pilus biogenesis. Curr Opin Chem Biol 4(6):653-660.

Sauer FG, Barnhart M, Choudhury D, Knight SD, Waksman G & Hultgren SJ (2000). Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struc Biol 10(5):548-556.

Sauer FG, Knight SD, Waksman G & Hultgren SJ (2000). PapD-like chaperones and pilus biogenesis. Sem Cell Dev Biol 11:27-34.

Knight SD, Choudhury D, Hultgren S, Pinkner J, Stojanoff V & Thompson A. (2002). Structure of the S pilus periplasmic chaperone SfaE at 2.2 Å resolution. Acta Cryst D58:1016-1022.

Zavialov AV, Kersley J, Korpela T, Zav'yalov VP, MacIntyre S & Knight SD (2002). Donor strand complementation mechanism in the biogenesis of non-pilus systems. Mol Microbiol 45(4):983-995.

Berglund J & Knight SD (2003). Structural basis of bacterial adhesion in the urinary tract. Adv Exp Med Biol 535:33-52

Kersley JE, Zavialov AV, Moslehi E, Knight SD & MacIntyre S (2003). Mutagenesis elucidates the assembly pathway and structure of Yersinia pestis F1 polymer. Adv Exp Med Biol 529:113-116.

Zavialov AV, Berglund J & Knight SD (2003). Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the F1 antigen Caf1M-Caf1 chaperone-subunit pre-assembly complex from Yersinia pestis. Acta Cryst D59:359-362.

Zavialov AV, Berglund J, Pudney AF, Fooks LJ, Ibrahim TM, MacIntyre S & Knight SD (2003). Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: Preserved folding energy drives fiber formation. Cell 113:587-596.

MacIntyre S, Knight SD & Fooks LJ (2004). Structure Assembly and Applications of the Polymeric F1 Antigen of Yersinia pestis. In Molecular and Cellular Biology of Pathogenic Yersinia. E Carniel & J Hinnebusch, eds., Chapter 18, pp 1-45, Horizon Press, UK.

Bouckaert JMJ, Berglund J, Schembri M, De Genst E, Cools L, Wuhrer M, Hung C-S, Pinkner J, Slättegård R, Zavialov A, Choudhury D, Langermann S, Hultgren SJ, Wyns L, Klemm P, Oscarson S, Knight SD & De Greve H (2005). FimH receptor binding studies disclose a novel class of high-affinity inhibitors of type 1 fimbrial adherence of Escherichia coli. Mol Microbiol 55:441-455.

Zavialov AV, Tischenko VM, Fooks LJ, Brandsdal BO, Åqvist J, Zav’yalov VP, MacIntyre S & Knight SD (2005). Resolving the energy paradox of chaperone/usher-mediated fibre assembly. Biochem J 389:685-694.

Bouckaert J, Mackenzie J, de Paz JL, Chipwaza B, Choudhury D, Zavialov A, Mannerstedt K, Anderson J, Pierard D, Wyns L, Seeberger PH, Oscarson S, De Greve H & Knight SD (2006). The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes. Mol Microbiol 61:1556-1568.

Zavialov AV & Knight SD (2007). A novel self-capping mechanism controls aggregation of periplasmic chaperone Caf1M. Mol Microbiol 64:153-164.

Knight SD (2007). Structure and Assembly of Yersinia pestis F1 Antigen. In The Genus Yersinia: From Genomics to Function. R. Perry ed. Chapter 6, pp 74-87, Springer-Verlag GMBH, Heidelberg.

Bouckaert J & Knight SD (2008). Structure, Function, and Assembly of Type 1 Pili. In Topics in Current Chemistry: Glycoscience and Microbial Adhesion. T Lindhorst & S Oscarson, eds. Chapter 3, pp 67-107, Springer-Verlag Berlin Heidelberg.

Yu X, Visweswaran GR, Duck Z, Marupakula S, MacIntyre S, Knight SD & Zavialov AV (2009). Caf1A usher possesses a Caf1 subunit-like domain that is crucial for Caf1 fibre secretion. Biochem J 418(3):541-551.

Askarieh G, Hedhammar M, Nordling K, Saenz A, Casals C, Rising A, Johansson J & Knight SD (2010). Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465:236-238.

Dubnovitsky AP, Duck Z, Härd T, MacIntyre S, & Knight SD (2010). Conserved hydrophobic clusters on the surface of the Caf1A usher C-terminal domain are important for F1 antigen assembly. J Mol Biol 403:243–259.

Lindhorst TK, Märten M, Fuchs A & Knight SD (2010). En route to photoaffinity labeling of the bacterial lectin FimH. Beilstein J Org Chem 6:810-822. 

Landreh M, Askarieh G, Nordling K, Hedhammar M, Rising A, Casals C, Astorga-Wells J, Alvelius G, Knight SD, Johansson J, Jörnvall H & Bergman T (2010). A pH-dependent Dimer Lock in Spider Silk Protein. J Mol Biol 404:326-336.

Willander H, Askarieh G, Landreh M, Westermark P, Nordling K, Keränen H, Hermansson E, Hamvas A, Nogee LM, Bergman T, Saenz A, Casals C, Aqvist J, Jörnvall H, Berglund H, Presto J, Knight SD & Johansson J (2012). High-resolution structure of a BRICHOS domain and its implications for anti-amyloid chaperone activity on lung surfactant protein C. Proc Natl Acad Sci U S A 109(7):2325-2329.

Yu XD, Fooks LJ, Moslehi-Mohebi E, Tischenko VM, Askarieh G, Knight SD, MacIntyre S & Zavialov AV (2012). Large is fast, small is tight: determinants of speed and affinity in subunit capture by a periplasmic chaperone. J Mol Biol 17(4):294-308.

Wilander H, Presto J, Askarieh G, Biverstal H, Frohm B, Knight SD, Johansson J, Linse S (2012). BRICHOS domains efficiently delay fibrillation of amyloid β-peptide. J Biol Chem 287(37):31608-31617.

Jaudzems K, Askarieh G, Landreh M, Nordling K, Hedhammar M, Jörnvall H, Rising A, Knight SD, Johansson J (2012). pH-Dependent Dimerization of Spider Silk N-Terminal Domain Requires Relocation of a Wedged Tryptophan Side Chain. J Mol Biol 422(4):477-487.

Yu XD, Dubnovitsky A, Pudney AF, MacIntyre S, Knight SD & Zavialov AV (2012). Allosteric mechanism controls traffic in the chaperone/usher pathway. Structure 20(11):1861-1871.

Roy SP, Rahman MM, Yu XD, Tuittila M, Knight SD & Zavialov AV (2012). Crystal structure of enterotoxigenic Escherichia coli colonization factor CS6 reveals a novel type of functional assembly. Mol Microbiol 86(5):1100-1115.

Knight SD, Presto J, Linse S & Johansson J (2013). The BRICHOS domain, amyloid fibril formation and their relationship. Biochemistry 52(43), 7523–7531.

Kronqvist N, Otikovs M, Chmyrov V, Chen G, Andersson M, Nordling K, Landreh M, Sarr M, Jörnvall H, Wennmalm S, Widengren J, Meng Q, Rising A, Otzen D, Knight SD, Jaudzems K & Johansson J (2013). Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation. Nat Commun 5:3254, doi:10.1038/ncomms4254.

Andersson M, Chen G, Otikovs M, Landreh M, Nordling K, Kronqvist N, Westermark P, Jörnvall H, Knight S, Ridderstråle Y, Holm L, Meng Q, Jaudzems K, Chesler M, Johansson J, Rising A. (2014) Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains. PLoS Biol. 12(8):e1001921. doi: 10.1371/journal.pbio.1001921.

Artursson P, Knight SD. (2015) Structural biology. Breaking the intestinal barrier to deliver drugs. Science. 347(6223):716-7. doi: 10.1126/science.aaa6124.

Wang D, Xu S, Song D, Knight S, Mao X. (2016) A gene encoding a potential adenosine 5'-phosphosulphate kinase is necessary for timely development of Myxococcus xanthus. Microbiology. 2016 Apr;162(4):672-83. doi: 10.1099/mic.0.000254.