Publications

  • Ameur, Adam

    A Bioinformatics Study of Human Transcriptional Regulation

    2008.

    Abstract

    Regulation of transcription is a central mechanism in all living cells that now can be investigated with high-throughput technologies. Data produced from such experiments give new insights to how transcription factors (TFs) coordinate the gene transcription and thereby regulate the amounts of proteins produced. These studies are also important from a medical perspective since TF proteins are often involved in disease. To learn more about transcriptional regulation, we have developed strategies for analysis of data from microarray and massively parallel sequencing (MPS) experiments.

    Our computational results consist of methods to handle the steadily increasing amount of data from high-throughput technologies. Microarray data analysis tools have been assembled in the LCB-Data Warehouse (LCB-DWH) (paper I), and other analysis strategies have been developed for MPS data (paper V). We have also developed a de novo motif search algorithm called BCRANK (paper IV).

    The analysis has lead to interesting biological findings in human liver cells (papers II-V). The investigated TFs appeared to bind at several thousand sites in the genome, that we have identified at base pair resolution. The investigated histone modifications are mainly found downstream of transcription start sites, and correlated to transcriptional activity. These histone marks are frequently found for pairs of genes in a bidirectional conformation. Our results suggest that a TF can bind in the shared promoter of two genes and regulate both of them.

    From a medical perspective, the genes bound by the investigated TFs are candidates to be involved in metabolic disorders. Moreover, we have developed a new strategy to detect single nucleotide polymorphisms (SNPs) that disrupt the binding of a TF (paper IV). We further demonstrated that SNPs can affect transcription in the immediate vicinity. Ultimately, our method may prove helpful to find disease-causing regulatory SNPs.

    Open access
  • Hauryliuk, Vasili

    A Few Strokes to the Family Portrait of Translational GTPases

    2008.

    Abstract

    Protein biosynthesis is a core process in all living organisms. Assembly of the protein chain from aminoacids is catalysed by the ribosome, ancient and extremely complex macromolecular machine. Several different classes of accessory molecules are involved in translation, and one set of them, called translational GTPases (trGTPases), was in the focus of this work.

    In this thesis properties of two trGTPases– EF-G and eRF3 - were studied by means of direct biochemical experiments. EF-G is a bacterial trGTPase involved in two steps of translation: translocation and ribosomal recycling. Translocation is a process of the ribosomal movement along the mRNA, and recycling as the step when upon completion of the protein ribosome is released from the mRNA via splitting in two ribosomal subunits. We found that off the ribosome EF-G has similar affinities to GDP and GTP, and thus given the predominance of the latter in the cell, EF-G should be present mostly in the complex with GTP. However, binding to the ribosome increases factors affinity to GTP drastically, ensuring that it is in the GTP-bound state. GDP can not promote neither translocation, not recycling, and GDPNP can not promote recycling. It can, however, promote translocation, but in so doing it results in an intermediate ribosomal state and translocation process can be reversed by addition of GDP, which is not the case for the EF-G•GTP-catalyzed reaction.

    The second trGTPase we investigated is eukaryotic termination factor eRF3. This protein together with another factor, eRF1, is involved translation termination, which is release of the synthesized protein from the ribosome. We demonstrateed, that eRF3 alone has basically no propensity to bind GTP and thus resides in the GDP-bound state. Complex formation between eRF1 and eRF3 promotes GTP binding by the latter, resulting in the formation of the ternary complex eRF1•eRF3•GTP, which in turn is catalyzing the termination event.

    Experimental investigations of trGTPases where rationalized within a generalized thermodynamical framework, accommoding the existent experimental observations, both structural and biochemical.

    Open access
  • Liao, Zhen

    A small amoeba at the crossroads of the big RNAi world: MicroRNA biogenesis and Argonaute function in Dictyostelium discoideum

    2018.

    Abstract

    Small non-coding RNA (ncRNA) mediated gene silencing, known as RNAi, is a key regulatory mechanism of gene expression in eukaryotes. MicroRNAs (miRNA), one major type of small ncRNAs, are about 21nt long and bound by Argonaute proteins. This RNA-protein complex, called RISC, silences post-transcriptionally target mRNAs containing partial or full complementary sequence to the miRNA.  

    MiRNAs are generated from step-wise endonucleolytic cleavages of long primary transcripts (pri-miRNAs) by RNase III nucleases. Biogenesis of miRNAs differs between uni- and multicellular eukaryotes, and also between plants and animals. In this thesis, I aimed to understand miRNA maturation in the social amoeba Dictyostelium discoideum, which stands at the crossroads between these phylogenetically distant groups. We showed that Dicer-like protein DrnB is essential for global maturation of D. discoideum miRNAs. The study of two pri-miRNAs revealed the conserved 5’ m7G-cap structures, but different 3’end formation from each other, and also from canonical miRNAs in plants and animals. In agreement with its evolutionary position, D. discoideum miRNA biogenesis showed unique and also shared features with both life groups.

    D. discoideum grows as a unicellular organism, but can switch to a multicellular development upon starvation. Most miRNAs, many other small ncRNAs, and Argonaute proteins, the core effectors of the RISC, are differentially expressed during development, indicative of a crucial role of RNAi mediated regulation throughout D. discoideum life cycle. Among the five Argonaute homologs in D. discoideum, I investigated the functions of three members, e.g. AgnB, C and E. Judging from their subcellular localization, the phenotypic consequences and transcriptional alteration resulting from single Argonaute gene deletion, our results suggested different roles of AgnB, C and E. Possibly AgnB associates with miRNAs and regulates gene expression post-transcriptionally; while AgnC seems to be involved in nuclear RNAi. Finally, the cytoplasmic AgnE inhibits D. discoideum cell growth and regulates developmental timing via an unknown mechanism.

    My thesis work expands our knowledge on D. discoideum RNAi with focuses on miRNA biogenesis and potential function of Argonaute proteins and, all together, sheds lights on the evolution of miRNA and RNAi.  

    Open access
  • Freyhult, Eva

    A Study in RNA Bioinformatics: Identification, Prediction and Analysis

    2007.

    Abstract

    Research in the last few decades has revealed the great capacity of the RNA molecule. RNA, which previously was assumed to play a main role only as an intermediate in the translation of genes to proteins, is today known to play many important roles in the cell in addition to that as a messenger RNA and transfer RNA, including the ability to catalyze reactions and gene regulations at various levels.

    This thesis investigates several computational aspects of RNA. We will discuss identification of novel RNAs and RNAs that are known to exist in related species, RNA secondary structure prediction, as well as more general tools for analyzing, visualizing and classifying RNA sequences.

    We present two benchmark studies concerning RNA identification, both de novo identification/characterization of single RNA sequences and homology search methods.

    We develope a novel algorithm for analysis of the RNA folding landscape that is based on the nearest neighbor energy model adopted in many secondary structure prediction programs. We implement this algorithm, which computes structural neighbors of a given RNA secondary structure, in the program RNAbor, which is accessible on a web server.

    Furthermore, we combine a mutual information based structure prediction algorithm with a sequence logo visualization to create a novel visualization tool for analyzing an RNA alignment and identifying covarying sites.

    Finally, we present extensions to sequence logos for the purpose of tRNA identity analysis. We introduce function logos, which display features that distinguish functional subclasses within a large set of structurally related sequences, as well as the inverse logos, which display underrepresented features. For the purpose of comparing tRNA identity elements between different taxa we introduce two contrasting logos, the information difference and the Kullback-Leibler divergence difference logos.

    Open access
  • Holm, Mikael

    A tale of two antibiotics: Fusidic acid and Viomycin

    2016.

    Abstract

    Antibiotics that target the bacterial ribosome make up about half of all clinically used antibiotics. We have studied two ribosome targeting drugs: Fusidic acid and Viomycin. Fusidic acid inhibits bacterial protein synthesis by binding to elongation factor G (EF-G) on the ribosome, thereby inhibiting translocation of the bacterial ribosome. Viomycin binds directly to the ribosome and inhibits both the fidelity of mRNA decoding and translocation. We found that the mechanisms of inhibition of these two antibiotics were unexpectedly complex. Fusidic acid can bind to EF-G on the ribosome during three separate stages of translocation. Binding of the drug to the first and most sensitive state does not lead to stalling of the ribosome. Rather the ribosome continues unhindered to a downstream state where it stalls for around 8 seconds. Dissociation of fusidic acid from this state allows the ribosome to continue translocating but it soon reaches yet another fusidic acid sensitive state where it can be stalled again, this time for 6 seconds. Viomycin inhibits translocation by binding to the pre-translocation ribosome in competition with EF-G. If viomycin binds before EF-G it stalls the ribosome for 44 seconds, much longer than a normal elongation cycle. Both viomycin and fusidic acid probably cause long queues of ribosomes to build up on the mRNA when they bind. Viomycin inhibits translational fidelity by binding to the ribosome during initial selection. We found that the concentration of viomycin required to bind to the ribosome with a given probability during decoding is proportional to the accuracy of the codon∙anticodon pair being decoded. This demonstrated that long standing models about ribosomal accuracy cannot be correct. Finally, we demonstrated that a common viomycin resistance mutation increases the drug binding rate and decreases its dissociation rate. Our results demonstrate that ribosome targeting drugs have unexpectedly complex mechanisms of action. Both fusidic acid and viomycin preferentially bind to conformations of the ribosome other than those that they stabilize. This suggests that determining the structures of stable drug-bound states may not give sufficient information for drug design.

    Open access
  • Zhang, Jingji

    Accuracy of mRNA Translation in Bacterial Protein Synthesis

    2015.

    Abstract

    Reading of messenger RNA (mRNA) by aminoacyl-tRNAs (aa-tRNAs) on the ribosomes in the bacterial cell occurs with high accuracy. It follows from the physical chemistry of enzymatic reactions that there must be a trade-off between rate and accuracy of initial tRNA selection in protein synthesis: when the current accuracy, the A-value, approaches its maximal possible value, the d-value, the kinetic efficiency of the reaction approaches zero. We have used an in vitro system for mRNA translation with purified E. coli components to estimate the d- and A-values by which aa-tRNAs discriminate between their cognate and near cognate codons displayed in the ribosomal A site. In the case of tRNALys, we verified the prediction of a linear trade-off between kinetic efficiency of cognate codon reading and the accuracy of codon selection. These experiments have been extended to a larger set of tRNAs, including tRNAPhe, tRNAGlu, tRNAHis, tRNACys, tRNAAsp and tRNATyr, and linear efficiency-accuracy trade-off was observed in all cases. Similar to tRNALys, tRNAPhe discriminated with higher accuracy against a particular mismatch in the second than in the first codon position. Remarkably high d-values were observed for tRNAGlu discrimination against a C-C mismatch in the first codon position (70 000) and for tRNAPhe discrimination against an A-G mismatch in the second codon position (79 000). At the same time, we have found a remarkably small d-value (200) for tRNAGlu misreading G in the middle position of the codon (U-G mismatch).

    Aminoglycoside antibiotics induce large codon reading errors by tRNAs. We have studied the mechanism of aminoglycoside action and found that the drug stabilized aminoacyl-tRNA in a codon selective in relation to a codon non-selective state. This greatly enhanced the probability of near cognate aminoacyl-tRNAs to successfully transcend the initial selection step of the translating ribosome. We showed that Mg2+ ions, in contrast, favour codon non-selective states and thus induce errors in a principally different way than aminoglycosides. 

    We also designed experiments to estimate the overall accuracy of peptide bond formation with, including initial selection accuracy and proofreading of tRNAs after GTP hydrolysis on EF-Tu. Our experiments have now made it possible to calibrate the accuracy of tRNA selection in the test tube to that in the living cells. We will now also be able to investigate the degree to which the accuracy of tRNA selection has been optimized for maximal fitness.  

    Open access
  • Indrisiunaite, Gabriele

    Accuracy of protein synthesis and its tuning by mRNA modifications

    2019.

    Abstract

    The ribosome is a large macromolecular complex that synthesizes all proteins in the cell in all kingdoms of life. Proteins perform many vital functions, ranging from catalysis of biochemical reactions to muscle movement. It is essential for cells and organisms that proteins are synthesized rapidly and accurately.

    This thesis addresses two questions regarding the accuracy of protein synthesis. How do bacterial and eukaryotic release factors ensure accurate termination? How do mRNA modifications affect the accuracy of bacterial protein synthesis?

    Bacterial release factors 1 (RF1) and 2 (RF2) are proteins that recognize the stop codons of mRNA and catalyze the release of a synthesized protein chain from the ribosome. It has been proposed that RFs ensure accurate termination by binding to the ribosome in an inactive, compact conformation and acquire a catalytically active, extended conformation only after recognizing a correct stop codon. However, the native compact conformation was too short-lived to be captured by conventional structural methods. We have developed a fast-kinetics approach for determining when the RFs are in a compact conformation on the ribosome and then used time-resolved cryogenic electron microscopy to capture the compact conformations of native RF1 and RF2 bound to a stop codon. We have also measured the effect of eukaryotic release factor 3 (eRF3) on the rate and accuracy of peptide release by eukaryotic release factor 1 (eRF1) in a yeast (Saccharomyces cerevisiae) in vitro translation system.

    Modifications of mRNA nucleotides are post-transcriptional regulators of gene expression, but little is known about their role in protein synthesis. We have studied the effect on accuracy of protein synthesis by two of these modifications: 2’-O-methylation and N6-methylation of adenosine. 2’-O-methylation greatly reduced the maximal rate (kcat) and efficiency (kcat/Km) of cognate (correct) codon reading by decreasing the initial GTPase activity in elongation factor Tu and enhancing proofreading losses of cognate aminoacyl-tRNAs. Remarkably, N6-methylation reduced the efficiency of codon reading by cognate aminoacyl-tRNAs and release factors, leaving the efficiency of the corresponding non-cognate reactions much less affected.

     

    Open access
  • Rizvanovic, Alisa

    Adapting to succeed: Post-transcriptional gene regulation in Salmonella

    2022.

    Abstract

    Salmonella are zoonotic pathogens of worldwide economic and health importance. Both during life outside and inside the host, these pathogens are subject to continuously changing environmental conditions, such as temperature changes, acid stress, nutrient limitations, and others. In order to thrive and survive, Salmonella must respond to these changes by adapting their physiology and morphology through changes in gene expression. RNA-binding proteins (RBPs) often work in concert with small RNAs (sRNAs) to control gene expression at the post-transcriptional level. Their mode of action includes regulation of RNA translation and/or stability, either positive or negative. Recently, ProQ was discovered to be a global RBP with a large repertoire of mRNA and sRNA targets in Salmonella. However, many details regarding ProQ biology are not fully understood, including the requirements for RNA-binding, mechanisms of gene regulation, and ProQ-dependent phenotypic changes. The main purpose of this doctoral thesis was to characterize the RBP ProQ and its regulatory role in Salmonella.

    First, we developed a method based on saturation mutagenesis coupled to phenotypic sorting and high-throughput sequencing to chart the functionally important regions in ProQ. Our results reveal that both the N-terminal and C-terminal domains are important for ProQ’s gene regulatory function, but the underlying mechanisms differ. Second, we show that ProQ is important for flagellar-mediated motility in Salmonella. More specifically, we show that ProQ and an associated sRNA promotes flagellar gene expression and motility by affecting translation of the master flagellar regulator FlhDC. Finally, we reveal that ProQ induces persister formation in Salmonella and enables a subpopulation of cells to survive high doses of different types of antibiotics through growth arrest.

    In conclusion, the findings presented herein provide new insights into the role of ProQ as a global post-transcriptional regulator of gene expression in Salmonella. Together, these findings contribute to our understanding of how Salmonella shapes its lifestyle and induces pathogenesis.  

    Open access
  • Keränen, Henrik

    Advances in Ligand Binding Predictions using Molecular Dynamics Simulations

    2014.

    Abstract

    Biochemical processes all involve associations and dissociations of chemical entities. Understanding these is of substantial importance for many modern pharmaceutical applications. In this thesis, longstanding problems with regard to ligand binding are treated with computational methods, applied to proteins of key pharmaceutical importance. Homology modeling, docking, molecular dynamics simulations and free-energy calculations are used here for quantitative characterization of ligand binding to proteins. By combining computational tools, valuable contributions have been made for pharmaceutically relevant areas: a neglected tropical disease, an ion channel anti-drug-target, and GPCR drug-targets.

    We report three compounds inhibiting cruzain, the main cysteine protease of the protozoa causing Chagas’ disease. The compounds were found through an extensive virtual screening study and validated with experimental enzymatic assays. The compounds inhibit the enzyme in the μM-range and are therefore valuable in further lead optimization studies.

    A high-resolution crystal structure of the BRICHOS domain is reported, together with molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry studies. This work revealed a plausible mechanism for how the chaperone activity of the domain may operate.

    Rationalization of structure-activity relationships for a set of analogous blockers of the hERG potassium channel is given. A homology model of the ion channel was used for docking compounds and molecular dynamics simulations together with the linear interaction energy method employed for calculating the binding free-energies.

    The three-dimensional coordinates of two GPCRs, 5HT1B and 5HT2B, were derived from homology modeling and evaluated in the GPCR Dock 2013 assessment. Our models were in good correlation with the experimental structures and all of them placed among the top quarter of all models assessed. 

    Finally, a computational method, based on molecular dynamics free-energy calculations, for performing alanine scanning was validated with the A2A adenosine receptor bound to either agonist or antagonist. The calculated binding free-energies were found to be in good agreement with experimental data and the method was subsequently extended to non-alanine mutations. With extensive experimental mutation data, this scheme is a valuable tool for quantitative understanding of ligand binding and can ultimately be used for structure-based drug design.

    Open access
  • Ghahremanpour, Mohammad Mehdi

    Alexandria: A General Drude Polarizable Force Field with Spherical Charge Density

    2019.

    Abstract

    Molecular-mechanical (MM) force fields are mathematical functions that map the geometry of a molecule to its associated energy. MM force fields have been extensively used for an atomistic view into the dynamic and thermodynamics of large molecular systems in their condensed phase. Nevertheless, the grand challenge in force field development—which remains to be addressed—is to predict­­­­ properties of materials with different chemistries and in all their physical phases. 

    Force fields are, in principle, derived through supervised machine learning methods. Therefore, the first step toward more accurate force fields is to provide high-quality reference data from which the force fields can learn. Thus, we benchmarked quantum-mechanical methods—at different levels of theory—in predicting of molecular energetics and electrostatic properties. As the result, the Alexandria library was released as an open access database of molecular properties.  

    The second step is to use potential functions describing interactions between molecules accurately. For this, we incorporated electronic polarization and charge penetration effects into the Alexandria force field. The Drude model was used for the explicit inclusion of electronic polarization. The distribution of the atomic charges was described by either a 1s-Gaussian or an ns-Slater density function to account for charge penetration effects. Moreover, the 12-6 Lennard-Jones (LJ) potential function, commonly used in force fields, was replaced by the Wang-Buckingham (WBK) function to describe the interaction of two particles at very short distances.  In contrast to the 12-6 LJ function, the WBK function is well behaved at short distances because it has a finite limit as the distance between two particles approaches zero. 

    The third step is free and open source software (FOSS) for systematic optimization of the built-in force field parameters. For this, we developed the Alexandria chemistry toolkit that is currently part of the GROMACS software package. 

    With these three steps, the Alexandria force field was developed for alkali halides and for organic compounds consisting of (H, C, N, O, S, P) and halogens (F, Cl, Br, I). We demonstrated that the Alexandria force field described alkali halides in gas, liquid, and solid phases with an overall performance better than the benchmarked reference force fields. We also showed that the Alexandria force field predicted the electrostatics of isolated molecules and molecular complexes in agreement with the density functional theory at the B3LYP/aug-cc-pVTZ level of theory. 

    Open access
  • Daurer, Benedikt J.

    Algorithms for Coherent Diffractive Imaging with X-ray Lasers

    2017.

    Abstract

    Coherent diffractive imaging (CDI) has become a very popular technique over the past two decades. CDI is a "lensless" imaging method which replaces the objective lens of a conventional microscope by a computational image reconstruction procedure. Its increase in popularity came together with the development of X-ray free-electron lasers (XFELs) which produce extremely bright and coherent X-rays. By facilitating these unique properties, CDI enables structure determination of non-crystalline samples at nanometre resolution and has many applications in structural biology, material science and X-ray optics among others. This work focuses on two specific CDI techniques, flash X-ray diffractive imaging (FXI) on biological samples and X-ray ptychography.

    While the first FXI demonstrations using soft X-rays have been quite promising, they also revealed remaining technical challenges. FXI becomes even more demanding when approaching shorter wavelengths to allow subnanometre resolution imaging. We described one of the first FXI experiments using hard X-rays and characterized the most critical components of such an experiment, namely the properties of X-ray focus, sample delivery and detectors. Based on our findings, we discussed experimental and computational strategies for FXI to overcome its current difficulties and reach its full potential. We deposited the data in the Coherent X-ray Database (CXIDB) and made our data analysis code available in a public repository. We developed algorithms targeted towards the needs of FXI experiments and implemented a software package which enables the analysis of diffraction data in real time.

    X-ray ptychography has developed into a very useful tool for quantitative imaging of complex materials and has found applications in many areas. However, it involves a computational reconstruction step which can be slow. Therefore, we developed a fast GPU-based ptychographic solver and combined it with a framework for real-time data processing which already starts the ptychographic reconstruction process while data is still being collected. This provides immediate feedback to the user and allows high-throughput ptychographic imaging.

    Finally, we have used ptychographic imaging as a method to study the wavefront of a focused XFEL beam under typical FXI conditions. 

    We are convinced that this work on developing strategies and algorithms for FXI and ptychography is a valuable contribution to the development of coherent diffractive imaging. 

    Open access
  • Kjellin, Jonas

    All Roads Lead to the Non-Coding RNome: Evolution of Multicellularity and Host Response to Bacterial Infection

    2020.

    Abstract

    The ability to control gene expression is fundamental for all living organisms. Therefore, a large variety of regulatory mechanisms exist in each cell which are essential for e.g. developmental processes and to quickly adapt to different cellular stresses such as infection. Today we know that much of this regulation depends on non-coding (nc)RNAs. However, the function and evolutionary origin of many ncRNAs remains to be understood.

    The work presented in this thesis revolves around the evolutionary group of Dictyostelia. These social amoebae grow as single cells but initiate a multicellular development program when food runs low. The evolutionary position of Dictyostelia within Amoebozoa together with their multicellular development make these organisms relevant for investigating the evolution of ncRNAs and their association with multicellularity. Furthermore, the dictyostelid Dictyostelium discoideum is one of few organisms besides plants and animals were miRNAs have been identified. It is also an established model organism, well-adapted for laboratory growth and detailed molecular work.

    In this thesis, we investigate the biogenesis of miRNAs in D. discoideum and show that the Dicer-like protein DrnB is essential for global miRNA maturation. Next, we study the evolution of another ncRNA, Class I RNAs, and show that these are conserved in all dictyostelids and likely emerged in their last common ancestor. Lastly, we utilize the D. discoideum infection model to study the regulation of messenger RNAs and ncRNAs upon infection by Mycobacterium marinum and Legionella pneumophila to improve our understanding of the complex interactions between host and pathogen. We show that the two bacteria induce distinct mRNA regulation in D. discoideum. In addition, we detected high levels of specific tRNA halves generated in the host in response to M. marinum but not L. pneumophila or bacteria utilized as food. Despite the large evolutionary distances, the regulation of both mRNAs and ncRNAs in D. discoideum was, in many aspects, representative for the regulation in macrophages after infection.

    In conclusion, by using a seemingly simple group of organisms, social amoebae, this thesis work addresses major questions such as the role of ncRNA in multicellular evolution and the intricate host-pathogen interplay during bacterial infection.

    Open access
  • Lehmann, Laura C.

    Allosteric control of ALC1-catalyzed nucleosome remodeling

    2021.

    Abstract

    The genetic information of eukaryotic cells is packaged inside the nucleus as chromatin. This packaging restricts access to the DNA and therefore represents a barrier for processes such as DNA replication, repair, and gene expression. Specialized enzymes, termed ATP-dependent chromatin remodelers (remodelers), are involved in regulating the chromatin landscape by repositioning, ejecting, and altering the composition of nucleosomes, the smallest building blocks of chromatin. Remodelers are tightly regulated by post-translational modifications, nucleosomal features, as well as by their own domains and subunits. Dysregulation of remodeling activity has been implicated in severe disease states such as various types of cancer.

    ALC1/CHD1L (Amplified in Liver Cancer 1/Chromodomain-Helicase-DNA-binding protein 1-Like) is an oncogenic remodeler involved in DNA damage repair. This thesis investigates the molecular basis of ALC1 regulation, the role of the nucleosome and its features in ALC1 activation, as well as the role of this remodeler in DNA damage repair. 

    The results presented in this thesis show that, without DNA damage, the catalytic domain of ALC1 adopts an inactive conformation that is stabilized through a conserved electrostatic interface with the macro domain of ALC1. Upon DNA damage, the binding of PAR chains to the macro domain displaces it from the ATPase motor of ALC1, thereby priming the remodeler for activation. Full activation additionally requires the interaction between a regulatory segment in the linker region of ALC1 and the nucleosome acidic patch. This interaction tethers the remodeler to the nucleosome and is required for coupling ATP hydrolysis to nucleosome remodeling. Additionally, investigations of ALC1 in vivo showed that the loss of ALC1 sensitizes cells to PARP inhibitors and is synthetic lethal with homologous recombination deficiency. This makes ALC1 a possible target for therapeutic drugs in combination with PARP inhibitors for cancers that are deficient in homologous recombination. 

    Open access
  • Nilsson, Per

    Allosteric Regulation of mRNA Metabolism: -Mechanisms of Cap-Dependent Regulation of Poly(A)-specific Ribonuclease (PARN)

    2008.

    Abstract

    Degradation of mRNA is a highly regulated step important for proper gene expression. Degradation of eukaryotic mRNA is initiated by shortening of the 3’ end located poly(A) tail. Poly(A)-specific ribonuclease (PARN) is an oligomeric enzyme that degrades the poly(A) tail with high processivity. A unique property of PARN is its ability to interact not only with the poly(A) tail but also with the 5’ end located mRNA cap structure. A regulatory role in protein synthesis has been proposed for PARN based on its ability to bind the cap that is required for efficient initiation of eukaryotic mRNA translation. Here we have investigated how the cap structure influences PARN activity and how PARN binds the cap. We show that the cap activates PARN and enhances the processivity of PARN. Further we show that the cap binding complex (CBC) inhibits PARN activity through a protein-protein interaction. To investigate the cap binding property of PARN, we identified the cap binding site at the molecular level using site-directed mutagenesis and fluorescence spectroscopy. We identified tryptophan 475, located within the RNA recognition motif (RRM) of PARN, as crucial for cap binding. A crystal structure of PARN bound to cap revealed that cap binding is mediated by the nuclease domain and the RRM of PARN. Tryptophan 475 binds the inverted 7-Me-guanosine residue through a stacking interaction. Involvement of the nuclease domain in cap binding suggests that the cap site and the active site overlap. Mutational analysis showed that indeed amino acids involved in cap binding are crucial for hydrolytic activity of PARN. Taken together, we show that PARN is an allosteric enzyme that is activated by the cap structure and that the allosteric cap binding site in one PARN subunit corresponds to the active site in the other PARN subunit.

    Open access
  • Kanchugal P, Sandesh

    Antibiotic Resistance and the Cellular Currency S-adenosyl-methionine: Modification of aminoglycosides and nucleic acids

    2020.

    Abstract

    Streptomycin and spectinomycin are antibiotics that bind to ribosomes and inhibit protein synthesis. Common resistance mechanisms involve enzymatic modification of the two drugs by aminoglycoside nucleotidyltransferases (ANTs). The first part of this thesis covers the structural mechanism of two ANT enzymes. The first is the dual-specificity AadA, belonging to the ANT(3")(9) family, which modifies the 3" position of streptomycin and position 9 of spectinomycin. The second is ANT(9) that only modifies spectinomycin at position 9.

    We solved crystal structures of both enzymes, AadA in complex with ATP and streptomycin and ANT(9) with ATP and spectinomycin. The two enzymes show overall structural similarity and both consist of an N-terminal nucleotidyltransferase domain and a C-terminal helical domain. The binding of ATP between the two domains induces a conformational change that allows the drug to bind. The modified hydroxyl groups of both drugs align at similar positions in the active site, even though the drugs are chemically distinct. Comparison of the ANT(9) and AadA structures shows that spectinomycin specificity is explained by the straight α5 helix followed by a short loop in ANT(9) that would clash with larger drug streptomycin. These findings allowed us to explain the substrate recognition of these enzymes and propose a catalytic mechanism.

    In the second and third parts of this thesis, I studied two enzymes that use S-adenosyl-methionine (SAM), RlmF in site-specific methylation of ribosomal RNA (rRNA) and Svi3-3 in SAM degradation. SAM is an essential molecule for normal cellular function in all-living cells and termed as a ‘cellular currency’. Knowledge is lacking about the substrate recognition of rRNA methyltransferases and the role of the modifications that they add during ribosome assembly. Here, we identify the residues of RlmF that are critical for binding of the cofactor SAM and the lithium chloride core particle substrate that mimics a 50S ribosome assembly intermediate.In the third part, I present structural and ligand-binding studies of a newly discovered SAM degrading enzyme Svi3-3 from bacteriophage.

    Open access
  • Johansson, Jeannette

    Antibodies for better or worse or Antibody variability in an egg-laying mammal and a novel strategy in the treatment of allergies

    2002.

    Abstract

    Antibodies are a central part of the immune defense system, and a large variability in their specificity is needed in order to be able to react against all possible foreign substances we may encounter during our lives. In this thesis, results are presented from investigations into how an egg-laying mammal, the Australian duck-billed platypus (Ornithorhynchus anatinus) creates antibody variability. Our results show that despite the lack of many V gene families the antibody repertoire in the platypus seems to be well developed. A long and highly variable complementarity-determining region (CDR) 3 compensates for the limited germline diversity. Interestingly, the presence of additional cysteine residues in the CDRs may form stabilizing disulfide bridges in the antigen binding loops and thereby increasing the affinity of the antibody-antigen interaction.

    Although the immune system is necessary for survival, it must be strictly controlled since it may otherwise over-react and cause more harm than benefits. Allergies and autoimmune diseases are examples of such over-reactions by the immune system. Allergies are increasing in the western world and have become one of the main medical issues of the 21st century. IgE is the central mediator in atopic allergies such as hay fever, eczema and asthma; it is therefore a prime target in the development of allergen-independent preventative treatments. Here we present results from several studies of a novel vaccine strategy aimed at reducing the levels of IgE antibodies. The vaccine results in the induction of anti-IgE antibodies, and the skin reactivity upon allergen challenge was significantly reduced in vaccinated animals. Our results suggest that active immunization against IgE has the potential to become a therapeutic method for humans. In addition, an evaluation of possible adjuvants that could be used as immune stimulators and thus help break self-tolerance at the time of vaccination is presented.

    Open access
  • Novotny, Marian

    Applications of Structural Bioinformatics for the Structural Genomics Era

    2007.

    Abstract

    Structural bioinformatics deals with the analysis, classification and prediction of three-dimensional structures of biomacromolecules. It is becoming increasingly important as the number of structures is growing rapidly. This thesis describes three studies concerned with protein-function prediction and two studies about protein structure validation.

    New protein structures are often compared to known structures to find out if they have a known fold, which may provide hints about their function. The functionality and performance of eleven fold-comparison servers were evaluated. None of the tested servers achieved perfect recall, so in practise a combination of servers should be used.

    If fold comparison does not provide any hints about the function of a protein, structural motif searches can be employed. A survey of left-handed helices in known protein structures was carried out. The results show that left-handed helices are rare motifs, but most of them occur in active or ligand-binding sites. Their identification can therefore help to pinpoint potentially important residues.

    Sometimes all available methods fail to provide hints about the function of a protein. Therefore, the potential of using docking techniques to predict which ligands are likely to bind to a particular protein has been investigated. Initial results show that it will be difficult to build a reliable automated docking protocol that will suit all proteins.

    The effect of various phenomena on the precision of accessible surface area calculations was also investigated. The results suggest that it is prudent to report such values with a precision of 50 to 100 Å2.

    Finally, a survey of register shifts in known protein structures was carried out. The identified potential register shifts were analysed and classified. A machine-learning approach ("rough sets") was used in an attempt to diagnose register errors in structures.

    Open access
  • Vinnere, Olga

    Approaches to Species Delineation in Anamorphic (mitosporic) Fungi: A Study on Two Extreme Cases

    2004.

    Abstract

    Since the beginning of mycology, studies of species concept in fungi have been mainly based on morphology, partially due to the history of mycology as part of botany. Current advances in biochemical and molecular research have provided mycologists with powerful tools that can be used for delineation of fungal taxa. Recently, an integrated approach to fungal taxonomy involving both morphological and molecular traits has found a wide application for identification of species, especially in anamorphic (mitosporic) fungi.

    In this thesis, I have tried to use this approach for identification of species units in two rather unrelated groups of organisms. One of the case studies concerned Colletotrichum acutatum – a worldwide economically important plant pathogenic anamorphic fungus, which is exhibiting a high level of variation in both morphological and molecular features. This fungus has been intensively studied during the past decades, and several attempts have been made to find reliable markers to separate it from other closely related species of Colletotrichum. The second case studied in this thesis was Mycelia Sterilia – an artificial group of fungi, which are deficient in production of spores of any kind, therefore lacking the main morphological feature used for assigning them to any certain fungal taxon below class level. Due to this peculiarity, Mycelia Sterilia have usually been neglected, and currently there is no working species concept applicable to these fungi.

    In this work, I have tried to clarify the relationships among C. acutatum and several other anamorphic (C. gloeosporioides and C. fructigenum) and teleomorphic (Glomerella acutata, G. cingulata and G. miyabeana) taxa that are closely related to each other. For this purpose, examination of morphological traits was employed in combination with comparison of DNA sequencing data from three loci and subsequent phylogenetic analysis. As a result, re-description of C. acutatum and separation of (at least) two new species was proposed.

    For studies of Mycelia Sterilia, a large collection of sterile strains was screened in search for biologically interesting organisms. One novel pathogen has been found, and two plant growth promoting strains with antifungal properties were selected. Attempt for tentative identification of those fungi was made based on their morphological, physiological and molecular features. Sequencing of several genes and spacers of the ribosomal DNA array revealed that the plant pathogenic strain is closely related to the teleomorphic basidiomycete genus Campanella, and plant growth-promoting isolates were identified as belonging to the anamorphic ascomycete genus Phoma. However, assigning the sterile strains to any existing species was not possible.

    The main conclusion of the thesis is that species in anamorphic fungi should be defined based on a combination of morphological and molecular methods, both equally important, involving as many aspects of fungal biology as is possible at our current state of knowledge.

    Open access
  • Ossipov, Dimitri

    Aspects of Antisense and Antigene Chemistry of Oligonucleotides Tethered to Intercalators

    2002.

    Abstract

    Synthetic and physicochemical studies on appropriately functionalized ODN-conjugates have been performed to evaluate their abilities to act as antisense agents against RNA or as intramolecular DNA cross-linking agents. Intercalating aromatic systems [phenazine (Pnz), dipyridophenazine (DPPZ)] and metallointercalators such as Ru2+(phen)2(DPPZ) and Ru2+(tpy)(DPPZ)L [where L = chemically or photochemically labile ligand, phen = phenanthroline, tpy = terpyridine], which are covalently tethered to the oligo-deoxynucleotides (ODNs), have been chosen for this purpose. The ODN-conjugates were typically prepared by automated solid phase synthesis using phosphoramidite building blocks, or on solid supports, both functionalized with the chromophore groups. The photosensitive metal complex, Ru2+(tpy)(DPPZ)(CH3CN), has been incorporated by post-synthetic coupling to the amino-linker modified ODNs via an amide bond. The intercalating ability of the tethered chromophores gave enhanced stability of the duplexes and triplexes formed with ODN-conjugates and their complementary targets: DNA, RNA, or double-stranded DNA. The conjugation of DPPZ chromophore to ODN (at 3', 5' or at the middle) led us to incorporate Ru2+(phen)2(DPPZ) through the DPPZ ligand, for the first time. The corresponding (Ru2+-ODN)•DNA duplexes showed dramatic stabilization (ΔTm = 19.4 – 22.0ºC). The CD and DNase I footprinting experiments suggest that the stabilization is owing to metallointercalation by threading of the Ru2+(phen)2 moiety through the ODN•DNA duplex core, thus "stapling" the two helical strands from the minor to major groove. On the other hand, Ru2+(tpy)(DPPZ)(CH3CN)-ODN conjugates represent a new class of oligonucleotides containing the photoactivatible Ru2+ complexes, which can successfully crosslink to the complementary strand. The mechanism of cross-linking upon photoirradiation of [Ru2+(tpy)(DPPZ)(CH3CN)-ODN]•DNA involves in situ conversion to the reactive [Ru2+(tpy)(DPPZ)(H2O)-ODN]•DNA which are subsequently cross-linked through the G residue of the complementary DNA strand. All starting materials and products have been purified by HPLC and/or by PAGE and subsequently characterized by MALDI-TOF as well as ESI mass spectroscopy. Terminal conjugation of the planar Pnz and DPPZ groups through the flexible linkers were also shown to improve thermal stability of the ODN•RNA hybrid duplexes without alteration of the initial AB-type global helical structure as revealed from CD experiments. As a result, RNase H mediated cleavage of the RNA strand in the intercalator-tethered ODN•RNA duplexes was more efficient compared to the natural counterpart. The RNase H cleavage pattern was also found to be dependent on the chemical nature of the chromophore. It appeared that introduction of a tether at the 3'-end of the ODN can be most easily tolerated by the enzyme regardless of the nature of the appending chromophore. The tethered DPPZ group has also been shown to chelate Cu2+ and Fe3+, like phenanthroline group, followed by the formation of redox-active metal complex which cleaves the complementary DNA strand in a sequence-specific manner. This shows that the choice of appropriate ligand is useful to (i) attain improved intercalation giving Tm enhancement, and (ii) sequence-specifically inactivate target RNA or DNA molecules using multiple modes of chemistry (RNase H mediated cleavage, free-radical, oxidative pathways or photocross-linkage).

    Open access
  • Prokopec, Kajsa

    B cells in Autoimmunity: Studies of Complement Receptor 1 & 2 and FcγRIIb in Autoimmune Arthritis

    2009.

    Abstract

    B cells are normally regulated to prevent activation against self-proteins through tolerance mechanisms.  However, occasionally there is a break in tolerance and B cells can become self-reactive, which might lead to the development of autoimmune disease. The activation of self-reactive B cells is regulated by receptors on the B cell surface, such as Fc gamma receptor IIb (FcγRIIb), complement receptor type 1 (CR1), and CR type 2 (CR2).

    In this thesis I have studied the role of FcγRIIb, CR1 and CR2 on B cells in autoimmune arthritis. By using a model for rheumatoid arthritis, I discovered that the initial self-reactive B cell response in arthritis was associated with the splenic marginal zone B cell population. Marginal zone B cells express high levels of CR1/CR2 and FcγRIIb, suggesting that they normally require high regulation. Further, female mice deficient in CR1/CR2 displayed increased susceptibility to arthritis compared to CR1/CR2-sufficient female mice. When investigating whether sex hormones affected arthritis susceptibility, we found that ovariectomy, of the otherwise fairly resistant CR1/CR2-sufficient mice, reduced the expression of CR1 on B cells and rendered the mice more susceptible to arthritis.

    In humans, a significantly reduced CR1 and FcγRIIb expression was found on B cells in aging women, but not in men. This may contribute to the increased risk for women to develop autoimmune disease as reduced receptor expression may lead to the activation of self-reactive B cells. In agreement, lower CR1, CR2 and FcγRIIb expression was seen in patients with rheumatoid arthritis.

     

    Finally, a soluble form of FcγRIIb was used to investigate FcγRIIb’s ability to bind self-reactive IgG in an attempt to treat autoimmune arthritis. Treatment of mice with established arthritis was associated with less self-reactive IgG antibodies and consequently less disease, suggesting that soluble FcγRIIb may be used as a novel treatment in arthritis.

    Open access
  • Gynnå, Arvid H.

    Bacterial DNA repair and molecular search

    2020.

    Abstract

    Surveillance and repair of DNA damage is necessary in all kinds of life. Different types of DNA damage require different repair mechanisms, but these mechanisms are often similar in all domains of life. The most serious type of damage, double stranded DNA breaks, are for example repaired in conceptually similar ways in both bacteria and eukaryotes. When this kind of breaks are repaired by homologous recombination, a homology to the site of the break must be found. Sometimes, this homology can be located far away from the break necessitating a search. Considering the large amount of heterologous DNA present, the complexity of this search is enormous. If and how this search can proceed has been unclear even in simple and well characterized organisms as E. coli.

    In this thesis, microscopy together with microfluidics are used to show that DNA repair by homologous recombination occurs even between homologies separated by several micrometers. We also see that it finishes well within the time of a cell generation, with the enigmatic search phase being as quick as eight or possibly even three minutes. Since this time is much faster than expected, we present a physical model demonstrating how homology search on this time scale is indeed plausible. Based on these results, we conclude that homologous repair using distantly located templates is likely to be a physiologically relevant mechanism of DNA repair.

    Microscopy together with image analysis by deep learning also provides a new method of detecting DNA damage in real time. Combined with tracking of cell lineages, it reveals that DNA damage in E. coli is repaired efficiently enough that the resulting fitness cost is close to none. With the same methods we also study the effect of deletions of several DNA repair enzymes, and largely confirms their previous characterizations. Among these, we confirm that the intriguing RecN protein is important but not absolutely necessary in DSB repair, that it acts early, and possibly aids in physically shaping the structure mediating the search.

    In addition to this, it is shown how DNA transcription and translation modulates the shape of the E. coli nucleoid. We observe how strong a transcription of a gene within a few minutes moves the gene towards the periphery of the cell where the concentration of ribosomes is higher, a movement possibly also aided by protein translation.

    We also present MINFLUX, a microscope for both nanometer scale localization of single fluorophores as well as in vivo single particle tracking with unprecedented trace length and resolution. Using this, the E. coli small ribosomal subunit could be observed to quickly shift between fast and slow diffusion states which might represent probing and discarding of RNAs suitable for translation.

    Open access
  • Nervall, Martin

    Binding Free Energy Calculations on Ligand-Receptor Complexes Applied to Malarial Protease Inhibitors

    2007.

    Abstract

    Malaria is a widespread disease caused by parasites of the genus Plasmodium. Each year 500 million clinical cases are reported resulting in over one million casualties. The most lethal species, P. falciparum, accounts for ~90% of the fatal cases and has developed resistance to chloroquine. The resistant strains are a major problem and calls for novel drugs.

    In this thesis, the process of computational inhibitor design is illustrated through the development of P. falciparum aspartic protease inhibitors. These proteases, called plasmepsins, are part of the hemoglobin degradation chain. The hemoglobin is degraded during the intraerythrocytic cycle and serves as the major food source. By inhibiting plasmepsins the parasites can be killed by starvation.

    Novel inhibitors with very high affinity were found by using a combination of computational and synthetic chemistry. These inhibitors were selective and did not display any activity on human cathepsin D. The linear interaction energy (LIE) method was utilized in combination with molecular dynamics (MD) simulations to estimate free energies of binding. The MD simulations were also used to characterize the enzyme–inhibitor interactions and explain the binding on a molecular level.

    The influence of the partial charge model on binding free energy calculations with the LIE method was assessed. Two semiempirical and six ab initio quantum chemical charge derivation schemes were evaluated. It was found that the fast semiempirical charge models are equally useful in free energy calculations with the LIE method as the rigorous ab initio charge models.

    Open access
  • Nasertorabi, Fariborz

    Biochemical and Structural Studies on the Adaptor Protein p130Cas

    2005.

    Abstract

    Crk associated substrate (Cas) is an adaptor protein that becomes phosphorylated upon integrin signaling and influences regulation of cell processes such as migration, proliferation and survival. It consists of multiple domains and regions that can interact with several signaling proteins involved in different signaling pathways. Cas was first discovered as a highly phosphorylated protein in v-Src and v-Crk transformed cells, showing involvement of this protein in cell transformation

    High level of Breast cancer antiestrogen resistance protein (BCAR-1), a homologue to Cas has shown to correlate with rapid reoccurrence of breast cancer and also create resistance towards Tamoxifen, the widely used medicine for receptor positive breast cancer patients.

    We have defined boundaries of two regions of Cas termed serine rich region (SRR) and Src binding domain (SBD) respectively and have isolated these segments for biochemical and structural studies. The structure of the serine rich part of Cas has been determined by NMR spectroscopy and reveals a four-helix bundle with unusually long loops. The 14-3-3 protein binds to Cas in a phospho-serine dependent manner and our study suggests that the binding site is located between two helices.

    The SH2-SH3 domain of a Src family kinase, Lck has also been crystallized in complex with a nine residue long peptide corresponding to the region in Cas that binds to SH2 domains. The structure of this complex has been solved at 2.7Å and shows that Cas binds Src family kinases (SFK) with high affinity suggesting a specific interaction between these two molecules. The biochemical studies on the specific binding site of these molecules show that SFK can bind to any of the phosphorylated tyrosines on the SH2 binding domain of Cas and only one phospho-tyrosine is enough to establish the binding. This binding assay does also indicate that SH3 binding domain of Cas is not essential for SFK binding.

    Open access
  • Attitalla, Idress H.

    Biological and Molecular Characteristics of Microorganism-Stimulated Defence Response in Lycopersicon esculentum –L

    2004.

    Abstract

    Microorganisms, including two fungi, Phytophthora cryptogea and Fusarium oxysporum strain Fo-(IMI 386351), and one bacterium, Pesudomonas sp. strain MF30, were tested for their abilities to stimulate plant defence responses in tomato (Lycopersicon esculentum –L.) and to serve as effective biocontrol agents (Bs). The study included in vivo and in vitro characterization of biological attributes of the microorganisms, pertaining to their abilities to stimulate plant immunity against a fungal pathogen, Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease. Using Lycopersicon esculentum –L. as a model plant for examining some fundamental elements of the plant-microorganism interaction, the study reveals and clarifies some aspects of the close association and the complexity of such systems.

    For each B, the results revealed a B-distinct plant-microorganism interaction, which included systemic induced resistance (SIR). A phylogenetic analyses of the partial sequences of two Fo-(IMI 386351) genes, a mitochondrial small subunit ribosomal DNA (mtSSU rDNA) and the nuclear translation elongation factor 1α (EF-1α), provided phylogenetic trees confirming that Fo-(IMI 386351) might be a member of Fol or of F. oxysporum f. sp. melonis, which have polyphyletic evolutionary origins. RFLP analysis (mtDNA), suggested that Fo-(IMI 386351) probably belongs to Fol. For routine and accurate differentiation between two morphologically indistinguishable F. oxysporum formae speciales strains, F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici, a molecular method (mtDNA RFLP analysis) was developed, and its usefulness for such differentiation was compared with that of two other methods: isozyme analysis and an osmotic method, revealed with high performance liquid chromatography (HPLC). The HPLC-spectra of Fo-(IMI 386351) had an extra peak for the two tested fractions, indicating that activation of the observed plant defence mechanism could have been at least partially the result of one of the products of the eliciting microbe. Preliminary results obtained by nuclear magnetic resonance spectrometry of those fractions suggest that the extra peak probably represents an oligosaccharide, which may have acted as a mobile signal and triggered the plant defence mechanisms.

    We concluded that (1) our three tested microorganisms are able to stimulate plant defence mechanisms by triggering SIR (plant immunity), (2) the complexity and elaborateness of evolved plant-microbe interactions involving plant defence can, at least in some cases, be observed and studied in the laboratory, and (3) molecular tools can be a powerful means for identifying fungal strains and for clarifying their taxonomical relationships.

    Open access
  • Sanamrad, Arash

    Biological Insights from Single-Particle Tracking in Living Cells

    2014.

    Abstract

    Single-particle tracking is a technique that allows for quantitative analysis of the localization and movement of particles. In this technique, trajectories are constructed by determining and connecting the positions of individual particles from consecutive images. Recent advances have made it possible to track hundreds of particles in an individual cell by labeling the particles of interest with photoactivatable or photoconvertible fluorescent proteins and tracking one or a few at a time.

    Single-particle tracking can be used to study the diffusion of particles. Here, we use intracellular single-particle tracking and trajectory simulations to study the diffusion of the fluorescent protein mEos2 in living Escherichia coli cells. Our data are consistent with a simple model in which mEos2 diffuses normally at 13 µm2 s−1 in the E. coli cytoplasm. Our approach can be used to study the diffusion of intracellular particles that can be labeled with mEos2 and are present at high copy numbers.

    Single-particle tracking can also be used to determine whether an individual particle is bound or free if the free particle diffuses significantly faster than its binding targets and remains bound or free for a long time. Here, we use single-particle tracking in living E. coli cells to determine the fractions of free ribosomal subunits, classify individual subunits as free or mRNA-bound, and quantify the degree of exclusion of bound and free subunits separately. We show that, unlike bound subunits, free subunits are not excluded from the nucleoid. This finding strongly suggests that translation of nascent mRNAs can start throughout the nucleoid, which reconciles the spatial separation of DNA and ribosomes with co-transcriptional translation. We also show that, after translation inhibition, free subunit precursors are partially excluded from the compacted nucleoid. This finding indicates that it is active translation that normally allows ribosomal subunits to assemble on nascent mRNAs throughout the nucleoid and that the effects of translation inhibitors are enhanced by the limited access of ribosomal subunits to nascent mRNAs in the compacted nucleoid.

    Open access
  • Kazemi, Masoud

    Calculations of Reaction Mechanisms and Entropic Effects in Enzyme Catalysis

    2017.

    Abstract

    Ground state destabilization is a hypothesis to explain enzyme catalysis. The most popular interpretation of it is the entropic effect, which states that enzymes accelerate biochemical reactions by bringing the reactants to a favorable position and orientation and the entropy cost of this is compensated by enthalpy of binding. Once the enzyme-substrate complex is formed, the reaction could proceed with negligible entropy cost.

    Deamination of cytidine catalyzed by E.coli cytidine deaminase appears to agree with this hypothesis. In this reaction, the chemical transformation occurs with a negligible entropy cost and the initial binding occurs with a large entropy penalty that is comparable to the entropic cost of the uncatalyzed reaction. Our calculations revealed that this reaction occurs with different mechanisms in the cytidine deaminase and water. The uncatalyzed reaction involves a concerted mechanism and the entropy cost of this reaction appears to be dominated by the reacting fragments and first solvation shell.

    The catalyzed reaction occurs via a stepwise mechanism in which a hydroxide ion acts as the nucleophile. In the active site, the entropy cost of hydroxide ion formation is eliminated due to pre-organization of the active site. Hence, the entropic effect in this reaction is due to a pre-organized active site rather than ground state destabilization.

    In the second part of this thesis, we investigated peptide bond formation and peptidyl-tRNA hydrolysis at the peptidyl transferase center of the ribosome. Peptidyl-tRNA hydrolysis occurs by nucleophilic attack of a water molecule on the ester carbon of peptidyl-tRNA. Our calculations showed that this reaction proceeds via a base catalyzed mechanism where the A76 O2’ is the general base and activates the nucleophilic water.

    Peptide bond formation occurs by nucleophilic attack of the α-amino group of aminoacyl-tRNA on the ester carbon of peptidyl-tRNA. For this reaction we investigated two mechanisms: i) the previously proposed proton shuttle mechanism which involves a zwitterionic tetrahedral intermediate, and ii) a general base mechanism that proceeds via a negatively charged tetrahedral intermediate. Although both mechanisms resulted in reasonable activation energies, only the proton shuttle mechanism found to be consistent with the pH dependence of peptide bond formation.

    Open access
  • Davids, Wagied

    Causes of Substitution Frequency Variation in Pathogenic Bacteria

    2005.

    Abstract

    Estimating substitution frequencies at sites that influence (Ka) and do not influence (Ks) the amino acid sequence is important for understanding the dynamics of molecular sequence evolution and the selective pressures that have shaped genetic variation.

    The aim of this work was to gain a deeper understanding of the driving forces of substitution frequency variation in human pathogens. Rickettsia prowazekii, the causative agent of epidemic typhus and Helicobacter pylori, which has been implicated in gastric diseases were used as model systems. A specific focus was on the evolution of orphan genes in Rickettsia. Additionally, adaptive sequence evolution and factors influencing protein evolutionary rates in H. pylori were studied.

    The comparative sequence analyses of orphan genes using Typhus Group (TG) and Spotted Fever Group (SFG) Rickettsia, indicate that orphan genes in the SFG correspond to pseudogenes in the TG and that pseudogenes in the SFG correspond to extensively degraded gene remnants in the TG. The analysis also showed that ancestral gene sequences could be reconstructed from extant gene remnants of closely related species. The studies of split genes in R. conorii indicate that many of the small fragmented ORFs are probably pseudogenes. Analysis of the H. pylori carbamoyl phosphate synthetase provided an opportunity to understand natural selection acting on a protein undergoing adaptive evolution. Factors such as network properties, protein-protein interactions, gene essentiality and chromosomal position on protein evolutionary rates in H. pylori were studied, of which antigenicity and gene location were identified as the strongest factors.

    In conclusion, high Ka/Ks ratios in human pathogens may reflect either adaptive sequence evolution or gene deterioration. Distinguishing between the two is an important task in molecular evolution and also of great relevance for medical microbiology and functional genomics research.

    Open access
  • Poplawski, Andrzej

    Cell cycle analysis of archaea

    2000.

    Abstract

    In my thesis, the cell cycle analysis of archaea and hyperthermophilic organisms is presented for the first time. Crenarchaea from the genus Sulfolobus were used as a model system. Plow cytometry and light microscopy were applied to investigate the timing and coordination of different cell cycle events. Furthermore, DNA content, nucleoid structure, and nucleoid distribution at different stages during the cell cycle were studied. The Sulfolobus cell cycle was characterized as having a short pre-replication and a long post-replication period. The presence of a low proportion of cells with segregated genomes in the exponentially growing population suggested 3 considerable time delay between termination of chromosome replication and completion of nucleoid partition, reminiscent of the G2 period in eukaryotic cells.

    The first available collection of conditional-lethal mutants of any archaeon or hyperthemophile was used to elucidate the coordination of cell cycle events. The studies showed that chromosome replication, nucleoid partition and cell division in Sulfolobus acidocaldarius, which are normally tightly coordinated during cellular growth, could be separately inhibited or uncoupled by mutation.

    The ftsZ gene, which is involved in cell division in bacteria and euryarchaea, was isolated from the halophilic archaeon Haloferax mediterranei. Transcriptional start sites were mapped, and putative translation initiation elements were identified. In both the upstream and downstream regions of the ftsZ gene, open reading frames were found to be conserved within the genus Haloferax. Furthermore, at the 3' end of the ftsZ gene, the homologs of the bacterial secE and nusG genes are conserved in almost all euryarchaea analyzed so far. The studies also demonstrated the functional conservation of the FtsZ protein in different archaeal species, as well as between euryarchaea and bacteria.

    Open access
  • Tiger, Carl-Fredrik

    Cellular Interactions with Extracellular Matrix During Development and in Muscle Disease

    2002.

    Abstract

    The formation and maintenance of tissues in multicellular animals are crucially dependent on cellular interactions with the extracellular matrix (ECM). Two different studies on such interactions are presented herein.

    Studies on expression of laminins in normal and dystrophic skeletal muscle, clarified a much debated issue regarding discrepancies seen for laminin α1-chain expression between human and mouse tissues. Lack of laminin α1-chain expression was verified in both mouse and human skeletal muscle. Furthermore, the earlier discrepancies seen for laminin α1-chain expression was explained by showing that an antibody-reagent, commonly used in human studies, recognised the laminin α5-chain rather than the laminin α1-chain

    The integrin α11-chain (forming α11β1 integrin) is the latest addition to the integrin receptor family, and belongs to the I domain-containing group of integrin α-chains. Previous studies had shown that α11β1 is a collagen receptor. In the present study, the in vitro and in vivo functions of the α11-chain were further characterised. Distribution studies on embryonic human and mouse tissues showed that the α11-chain was expressed on mesenchymal cells in the developing tendon, perichondrium, intervertebral disc, and cornea. The interactions of α11β1 integrin with collagen type I and IV were studied in vitro. The α11β1 bound to these collagens in a manner similar to integrin α2β1 (with collagen type I being the preferred ligand for α11β1). Furthermore, α11β1 was shown to mediate migration on collagen type I coated surfaces, and to mediate contraction of collagen type I gels. The in vivo functions of the α11-chain were investigated by the generation of integrin α11-chain null-mice, using gene targeted disruption of the itga11 in embryonic stem cells. Two independent lines of mice lacking α11 protein were generated. Phenotypic analysis of these mice indicated a role for α11β1 in the formation of the musculoskeletal system.

    Open access
  • Carlsson, Jens

    Challenges in Computational Biochemistry: Solvation and Ligand Binding

    2008.

    Abstract

    Accurate calculations of free energies for molecular association and solvation are important for the understanding of biochemical processes, and are useful in many pharmaceutical applications. In this thesis, molecular dynamics (MD) simulations are used to calculate thermodynamic properties for solvation and ligand binding.

    The thermodynamic integration technique is used to calculate pKa values for three aspartic acid residues in two different proteins. MD simulations are carried out in explicit and Generalized-Born continuum solvent. The calculated pKa values are in qualitative agreement with experiment in both cases. A combination of MD simulations and a continuum electrostatics method is applied to examine pKa shifts in wild-type and mutant epoxide hydrolase. The calculated pKa values support a model that can explain some of the pH dependent properties of this enzyme.

    Development of the linear interaction energy (LIE) method for calculating solvation and binding free energies is presented. A new model for estimating the electrostatic term in the LIE method is derived and is shown to reproduce experimental free energies of hydration. An LIE method based on a continuum solvent representation is also developed and it is shown to reproduce binding free energies for inhibitors of a malaria enzyme. The possibility of using a combination of docking, MD and the LIE method to predict binding affinities for large datasets of ligands is also investigated. Good agreement with experiment is found for a set of non-nucleoside inhibitors of HIV-1 reverse transcriptase.

    Approaches for decomposing solvation and binding free energies into enthalpic and entropic components are also examined. Methods for calculating the translational and rotational binding entropies for a ligand are presented. The possibility to calculate ion hydration free energies and entropies for alkali metal ions by using rigorous free energy techniques is also investigated and the results agree well with experimental data.

    Open access
  • Liu, Jingyi

    Characterization of secreted Giardia intestinalis cysteine proteases

    2019.

    Abstract

    Giardia intestinalis, the causative agent of the diarrheal disease giardiasis, is a protozoan parasite that colonizes the upper small intestine of mammals, including humans. It can be divided into eight genotypes or assemblages (A through H) and only assemblage A and B are infective to humans. Giardiasis is a multi-factorial disease but few giardial virulence factors have been identified and characterized.

    In this thesis, we used proteomics to identify the major excretory-secretory products (ESPs) released by Giardia trophozoites of the WB and GS isolates during interaction with intestinal epithelial cells (IECs) in vitro (Paper I). To deepen our understanding of the role of ESPs in giardiasis, we focused on three specific secreted Giardia cysteine proteases (CPs; CP14019, CP16160 and CP16779). All the three CPs are capable of opening the apical junction complexes between IECs to degrade chemokines produced in response to Giardia (Paper II). This can partly explain the induction of symptoms and immunosuppression seen during giardiasis. We further studied the cleavage specificity of these CPs using substrate phage display and recombinant protein substrates. The preferred sequences were used to search potential human in vivo targets and a number of candidates were identified, including human immunoglobulins as well as defensins, that were subsequently shown to be efficiently cleaved by the CPs (Paper III). To investigate the involvement of CPs in mucus degradation, we tested the CPs on recombinant MUC2 constructs and full-length MUC2. MUC2 is the major component of the mucus layer in the small intestine. It was shown that CP14019 cleave MUC2 in the N-terminal, suggesting a mechanism that the parasite can use to disrupt/release the mucus gel network and get access to the intestinal epithelium of the host (Paper IV).

    In summary, this thesis has studied secreted Giardia CPs and their roles in Giardia infections, providing significant insights into the molecular pathogenesis of giardiasis.

    Open access
  • Koripella, Srihari Nagendra Ravi Kiran

    Characterizing Elongation of Protein Synthesis and Fusidic Acid Resistance in Bacteria

    2013.

    Abstract

    Protein synthesis is a highly complex process executed by the ribosome in coordination with mRNA, tRNAs and translational protein factors. Several antibiotics are known to inhibit bacterial protein synthesis by either targeting the ribosome or the proteins factors involved in translation. Fusidic acid (FA) is a bacteriostatic antibiotic that blocks polypeptide chain elongation by locking elongation factor-G (EF-G) on the ribosome. Mutations in fusA, the gene encoding bacterial EF-G, confer high-level of resistance towards FA.  Antibiotic resistance in bacteria is often associated with fitness loss, which is compensated by acquiring secondary mutations. In order to understand the mechanism of fitness loss and compensation in relation to FA resistance, we have characterized three S. aureus EF-G mutants with fast kinetics and crystal structures. Our results show that, the causes for fitness loss in the FA-resistant mutant F88L are resulting from significantly slower tRNA translocation and ribosome recycling. Analysis of the crystal structures, together with the results from our biochemical studies enabled us to propose that FA-resistant EF-G mutations causing fitness loss and compensation operate by affecting the conformational dynamics of EF-G on the ribosome. EF-G is a G-protein belonging to the GTPase super-family. In all the translational GTPases, a conserved histidine (H92 in E. coli EF-G) residue, located at the apex of switch II in the G-domain is believed to play a crucial role in ribosome-stimulated GTP hydrolysis and inorganic phosphate (Pi) release. Mutagenesis of H92 to alanine (A) and glutamic acid (E) showed different degree of defect in different steps of translation. Compared to wild type (WT) EF-G, mutant H92A showed a 10 fold defect in ribosome mediated GTP hydrolysis whereas the other mutant H92E showed a 100 fold defect. However, both the mutants are equally defective in single round Pi release (100 times slower than WT). When checked for their activity in mRNA translocation, H92A and H92E were 10 times and 100 times slower than WT respectively. Results from our tripeptide formation experiments revealed a 1000 fold defect for both mutants. Altogether, our results indicate that GTP hydrolysis occurs before tRNA translocation, whereas Pi release occurs probably after or independent of the translocation step. Further, our results confirm that, His92 has a vital role residue in ribosome-stimulated GTP hydrolysis and Pi release.

     

    Open access
  • Pradeepkumar, Pushpangadan Indira

    Chemically Modified Oligonucleotides: Synthesis, Physicochemical and Biochemical Properties of their Duplexes with DNA and RNA

    2004.

    Abstract

    This thesis is based on 9 papers dealing with the synthesis, physicochemical and biochemical properties of two types of chemically modified oligonucleotides which have the potential to down-regulate gene expression: (i) The first set is comprised of antisense oligonucleotides (AONs) conjugated with different chromophores of varying size, charge and π-electron density. Conjugation of the chromophores at the 3'- or 5'-end enhanced the target RNA binding affinity and RNase H recruitment capabilities compared to the native counterpart without changing the global helical conformation of their AON/RNA hybrid duplexes. The 3'-dipyridophenazine (DPPZ) has emerged as the most promising non-toxic chromophore in this series. (ii) The second set encompasses a new class of AONs containing North-East conformationally constrained 1',2'-oxetane-nucleosides. The introduction of oxetane-T and -C units imparts lowering of the Tm by ~ 6º and ~ 3 ºC/modification, respectively, of the AON/RNA hybrids, whereas the incorporation of the corresponding oxetane-A and-G units into AONs did not alter the thermostability in comparison with that of the native hybrid duplex. The oxetane-modified AONs have been found to possess enhanced serum stability compared to that of the native, whereas oxetane-T and -C containing AONs were more endonuclease-resistant than oxetane-A and-G modified AONs. All oxetane-modified mixmer AON/ RNA hybrid duplexes were, however, found to be excellent substrates for RNase H cleavage, which has been analyzed by Michaelis-Menten kinetics. The oxetane-modified mixmer AONs have shown effective down-regulation of the proto-oncogene c-myb mRNA in the K562 human leukemia cells, which was analyzed by QRT-PCR and Western Blot. Based on the amount of AON uptake after delivery, determined by slot blot, it was apparent that the oxetane-modified AONs are 5-6 times more effective antisense agents than the corresponding isosequential phosphorothioate analogues. The electrochemical assay based on sensitive nucleic acid mediated charge transport (CT) has revealed that the presence of oxetane-T unit causes more stacking perturbations in a DNA/DNA duplex than in a DNA/RNA duplex.

    Open access
  • Strömbergsson, Helena

    Chemogenomics: Models of Protein-Ligand Interaction Space

    2009.

    Abstract

    The large majority of the currently used drugs are small molecules that interact with proteins. Understanding protein-ligand recognition is thus central to drug discovery and design. Improved experimental techniques have resulted in an immense growth of drug target information. This has stimulated the development of chemogenomics and proteochemometrics (PCM) that take target information as well as ligand information into account to study the genomic effect of potential drugs.

    This thesis is concerned with modeling protein-ligand recognition, and the aim is to develop models that generalize to the entire protein-ligand space. To this end, protein-ligand interaction data has been extracted and manually curated from public databases, protein and ligand descriptors have been computed, and predictive models have been induced with machine-learning methods.

    An introduction to chemogenomics, machine learning, and PCM modeling is given in the thesis summary, which is followed by five research papers. Paper I shows that it is possible to induce interpretable models with a non-linear rule-based method, and paper II demonstrates that local descriptors of protein structure may be used to induce PCM models that cover proteins differing in sequence and fold. In paper III, such local descriptors are used to induce a PCM model on a large dataset that includes all major enzyme classes. This demonstrates that the local descriptors may be used to induce generalized models that span the entire known structural enzyme-ligand space. Paper IV describes a step towards proteome-wide PCM models, and shows that it is possible to predict high- and low-affinity complexes using a set of protein and ligand descriptors that do not require knowledge of 3D structure. Finally, paper V presents a method to visualize and compare protein-ligand chemogenomic subspaces, which may be used to predict unwanted cross-interactions of drugs with other proteins in the proteome.

    Open access
  • Bouakaz, Elli

    Choice of tRNA on Translating Ribosomes

    2006.

    Abstract

    This thesis addresses different aspects of the question about accuracy of protein synthesis: i) the mechanism of tRNA selection during translation ii) study of ribosomal mutations that affect accuracy and iii) the choice of aminoacyl-tRNA isoacceptors on synonymous codons.

    By measuring the codon reading efficiencies of cognate and near-cognate ternary complexes we demonstrate that in optimal physiological conditions accuracy of substrate selection is much higher than previously reported; that during translation the ribosomal A site is not blocked by unspecific binding of the non-cognate tRNAs which would inhibit the speed of protein synthesis. Our results suggest that there is an asymmetry between initial selection and proofreading step concerning the wobble position, and that binding of non-cognate substrate does not induce GTP hydrolysis on the ribosome.

    The knowledge obtained from the ribosomal mutant strains can be used to explain the general relation between the structure of the ribosome and the mechanism of codon recognition, as well as the streptomycin resistance or dependence phenomenon.

    Our work showed experimentally that the probability for binding certain tRNA to the A site of the ribosome is not based on the simple codon-anticodon base pair matching. In the living cell the availability of cognate tRNAs versus the demand for them (the frequency of codon usage) is finely balanced to ensure critical protein synthesis in stress conditions. We have also discovered a new codon assignment for a specific tRNALeu isoacceptor and detected a base modification in its anticodon, which has not been previously observed. The motivation for the later findings comes from a system biology modeling and the results are an example of an interdisciplinary collaboration.

    Open access
  • Andersson, Mattias K.

    Cleavage Specificity of Mast Cell Chymases

    2008.

    Abstract

    Mast cells (MC) are potent inflammatory cells that are known primarily for their prominent role in IgE mediated allergies. However, they also provide beneficial functions to the host, e.g. in bacterial and parasitic defence. MCs react rapidly upon stimulation by releasing potent granule-stored mediators, and serine proteases of the chymase or tryptase families are such major granule constituents.

    As a first step towards a better understanding of the biological function of these proteases, we have determined the extended cleavage specificities of four mammalian mast cell chymases, by utilizing a substrate phage display approach. The specificities of these enzymes have then been used to compare their functional characteristics.

    The major mucosal MC chymase in mice, mMCP-1, was found to possess a strict preference in four amino acid positions of the peptide substrate. Using this sequence to search the mouse proteome for potential in vivo substrates led to the identification of several very interesting potential novel substrates. Some of them may explain the increased epithelial permeability provided by this enzyme.

    Human MCs, express only one single α-chymase, and the rodent α-chymases have secondarily gained elastase-like primary cleavage specificity. However, rodents express additional chymases, the β-chymases, and rodent β-chymases may have adopted the function of the α-chymases. The cleavage specificities of the human chymase and two rodent β-chymases were therefore determined (rat rMCP-1 and mouse mMCP-4). N-terminal of the cleaved bond the three chymases showed similar preferences, but C-terminal the human chymase and mMCP-4 shared a high preference for acidic amino acids in the P2´ position and therefore seem to be functional homologues. The molecular interactions mediating the preference for acidic amino acids in position P2´ were further investigated. By site-directed mutagenesis of the human chymase, amino acids Arg143 and Lys192 were concluded to synergistically mediate this preference.

    Our data show that chymases, of different MC subpopulations, display quite different extended cleavage specificities. However mouse do possess a MC chymase with almost identical cleavage specificity as the human MC chymase indicating a strong evolutionary pressure to maintain this enzyme specificity.

    Open access
  • Hantke, Max Felix

    Coherent Diffractive Imaging with X-ray Lasers

    2016.

    Abstract

    The newly emerging technology of X-ray free-electron lasers (XFELs) has the potential to revolutionise molecular imaging. XFELs generate very intense X-ray pulses and predictions suggest that they may be used for structure determination to atomic resolution even for single molecules. XFELs produce femtosecond pulses that outrun processes of radiation damage and permit the study of structures at room temperature and of structural dynamics.

    While the first demonstrations of flash X-ray diffractive imaging (FXI) on biological particles were encouraging, they also revealed technical challenges. In this work we demonstrated how some of these challenges can be overcome. We exemplified, with heterogeneous cell organelles, how tens of thousands of FXI diffraction patterns can be collected, sorted, and analysed in an automatic data processing pipeline. We improved  image resolution and reduced problems with missing data. We validated, described, and deposited the experimental data in the Coherent X-ray Imaging Data Bank.

    We demonstrated that aerosol injection can be used to collect FXI data at high hit ratios and with low background. We reduced problems with non-volatile sample contaminants by decreasing aerosol droplet sizes from ~1000 nm to ~150 nm. We achieved this by adapting an electrospray aerosoliser to the Uppsala sample injector. Mie scattering imaging was used as a diagnostic tool to measure positions, sizes, and velocities of individual injected particles.

    XFEL experiments generate large amounts of data at high rates. Preparation, execution, and data analysis of these experiments benefits from specialised software. In this work we present new open-source software tools that facilitates prediction, online-monitoring, display, and pre-processing of XFEL diffraction data.

    We hope that this work is a valuable contribution in the quest of transitioning FXI from its first experimental demonstration into a technique that fulfills its potentials.

    Open access
  • Bagchi, Sonchita

    Coiled coil Cytoskeleton in Bacterial Cell Architecture: Studies of Growth and Development in Streptomyces

    2011.

    Abstract

    Bacterial cytoskeleton is an exciting and relatively new field of research. Recent findings have proven that microbes are well-organized and neatly structured organisms. In this study we have shown that intermediate filament-like proteins with a characteristic rod domain architecture of coiled coil segments separated by non-coiled coil linkers, are widely spread among bacteria.

    We identified and characterized an intermediate filament-like protein (named FilP after filamentous protein) in Streptomyces coelicolor. It shares the characteristic biochemical property of eukaryotic intermediate filaments of formation of spontaneous filaments in vitro without requiring any energy or co-factor. We have provided here a preliminary model of its assembly in vitro. FilP also forms in vivo filaments in S. coelicolor hyphae, which are strongest at the sub-apical location of growing vegetative hyphae. We have proposed that FilP cytoskeletal network provides rigidity to the hyphae, especially at the growing tips, by interacting with an essential coiled coil protein DivIVA and possibly other partner elements, yet to be found.

    S. coelicolor is a well-studied model organism with a complicated life cycle. It germinates from a spore and spreads by forming branched vegetative hyphae. Lack of nutrients in the environment initiates formation of aerial hyphae in the air, perpendicular to the vegetative ones. The aerial hyphae differentiate into spore chains and eventually grey-pigmented dispersed individual spores are released. The signals involved in sporulation including cell division and chromosome segregation are not clear yet. We characterized here a novel locus consisting of two genes: a small putative membrane protein with no defined function, named SmeA and a member of the SpoIIIE/FtsK family, called SffA. The expression of this locus appears to be dependent on whiA and whiG-whiH-whiI pathways. This finding is intriguing as it can provide insight to the relationship between two apparently unrelated pathways, both leading to the same function of septation and maturation during sporulation.

    Open access
  • Einarsson, Elin

    Comparative Cell Biology in Diplomonads

    2015.

    Abstract

    The diplomonads are a diverse group of eukaryotic flagellates found in microaerophilic and anaerobic environments. The most studied diplomonad is the intestinal parasite Giardia intestinalis, which infects a variety of mammals and cause diarrheal disease. Less is known about Spironucleus salmonicida, a parasite of salmonid fish, known to cause systemic infections with high mortality.

    We created a transfection system for S. salmonicida to study cellular functions and virulence in detail (Paper I). The system was applied to explore the mitochondrion-related organelle (MRO) in S. salmonicida. We showed that S. salmonicida possesses a hydrogenosome (Paper II) with a higher metabolic capacity than the corresponding MRO of Giardia, the mitosome. Evolutionary analysis of key hydrogenosomal proteins showed ancient origin, indicating their presence in the ancestral diplomonad and subsequent loss in Giardia. Annexins are of evolutionary interest since these proteins are found across all kingdoms. Annexin-like proteins are intriguingly expanded into multigene families in Giardia and Spironucleus. The annexins of S. salmonicida were characterized (Paper III) with distinct localizations to various cellular structures, including a putative adhesion structure anterior in the cell.

    The disease-causing Giardia trophozoites differentiate into infectious cysts, a process essential for transmission and virulence of the parasite. Cysts are often spread via contaminated water and exposed to environmental stressors, such as UV irradiation. We studied the survival and transcriptional response to this stress factor (Paper IV) and results showed the importance of active DNA replication machinery for parasite survival after DNA damage. In addition, we studied transcriptional changes along the trajectory of encystation (Paper V), which revealed a coordinated cascade of gene regulation. This was observed for the entire transcriptome as well as putative regulators. Large transcriptional changes appeared late in the process with the majority of differentially regulated genes encoding hypothetical proteins. We studied the localizations of several of these to gain information of their possible function.

    To conclude, the diplomonads are complex eukaryotic microbes with cellular processes adjusted to match their life styles. The work in this thesis has provided insight of their adaptations, differences and similarities, but also new interesting leads for future studies of diplomonad biology and virulence. 

    Open access
  • Xu, Feifei

    Comparative Genomics in Diplomonads: Lifestyle Variations Revealed at Genetic Level

    2015.

    Abstract

    As sequencing technologies advance genome studies are becoming a basic tool for studying an organism, and with more genomes available comparative genomics is maturing into a powerful tool for biological research. This thesis demonstrates the strength of a comparative genomics approach on a group of understudied eukaryotes, the diplomonads.

    Diplomonads are a group of single cell eukaryotic flagellates living in oxygen-poor environments. Most diplomonads are intestinal parasites, like the well-studied human parasite Giardia intestinalis. There are seven different G. intestinalis assemblages (genotypes) affecting different hosts, and it’s under debate whether these are one species. A genome-wide study of three G. intestinalis genomes from different assemblages reveals little inter-assemblage sexual recombination, supporting that the different G. intestinalis assemblages are genetically isolated and thus different species.

    A genomic comparison between the fish parasite S. salmonicida and G. intestinalis reveals genetic differences reflecting differences in their parasitic lifestyles. There is a tighter transcriptional regulation and a larger metabolic reservoir in S. salmonicida, likely adaptations to the fluctuating environments it encounters during its systemic infection compared to G. intestinalis which is a strict intestinal parasite.

    The S. salmonicida genome analysis also discovers genes involved in energy metabolism. Some of these are experimentally shown to localize to mitochondrion-related organelles in S. salmonicida, indicating that they possess energy-producing organelles that should be classified as hydrogenosomes, as opposed to the mitosomes in G. intestinalis.

    A transcriptome analysis of the free-living Trepomonas is compared with genomic data from the two parasitic diplomonads. The majority of the genes associated with a free-living lifestyle, like phagocytosis and a larger metabolic capacity, are of prokaryotic origin. This suggests that the ancestor of the free-living diplomonad was likely host-associated and that the free-living lifestyle is a secondary adaptation acquired through horizontal gene transfers. 

    In conclusion, this thesis uses different comparative genomics approaches to broaden the knowledge on diplomonad diversity and to provide more insight into how the lifestyle differences are reflected on the genetic level. The bioinformatics pipelines and expertise gained in these studies will be useful in other projects in diplomonads and other organismal groups.

    Open access
  • Tamas, Ivica

    Comparative Genomics of Endosymbiotic Bacteria

    2002.

    Abstract

    Genomes of intracellular bacteria are thought to be the products of reductive evolution. They have evolved from ancestral genomes of free-living bacteria through a process of massive gene loss. This doctoral thesis focuses on the comparison of the only two completely sequenced genomes of obligate symbionts presently available: Buchnera (Ap) and Buchnera (Sg). The sequencing of the complete genome of Buchnera (Sg) is a part of this work.

    A major finding presented is that these genomes are remarkably conserved in both genome content and gene order, which contrasts with the current view of bacterial genomes as rapidly evolving entities. On the basis of the data obtained, there are no signs of inversions, translocations, duplications or horizontally transferred genes. Furthermore, the Buchnera genomes are the first bacterial genomes identified with a loss of recA, a major gene involved in homologous recombination. This single deletion event has probably contributed to the observed genomic stasis. In addition, the recF gene involved in DNA-repair and SOS induction has also been eliminated, and mutations have started to accumulate in genes related to base-excision repair in Buchnera (Sg). In contrast to the remarkable stability in structure, surprisingly high rates of nucleotide substitutions causing amino acids replacements and substitutions at synonymous sites were identified. Therefore, the genetic changes introduced into these two genomes since their divergence is almost exclusively due to the nucleotide sequence substitutions.

    A number of pseudogenes in different stages of gene degradation have been observed in the Buchnera (Sg) genome, suggesting that genome reduction is still an ongoing, albeit slow process. Almost half of the weakly mutated genes with single or a few frameshift mutations are associated with DNA-repair, cell envelope or cysteine biosynthesis. A comparative study of a set of genes involved in peptidoglycan biosynthesis in four additional lineages of Buchnera has shown that some of the single nucleotide deletions were acquired already 30-50 million years ago. Nevertheless, the substitution patterns of these genes are typical of Buchnera genes, suggesting that they may have maintained a functional role despite the accumulation of frameshift mutations.

    The two Buchnera genomes are the first ever completely sequenced bacterial genomes for which a divergence date is available (50-70 myr). This was made possible by the availability of a fossil record for the aphid host and the exclusively vertical transmission of Buchnera via maternal inheritance. Thus, the analysis of the two genomes provides a first insight into the pace of molecular evolution in prokaryotes. Substitution rates were estimated to 9 x 10-9 synonymous substitutions per site and per year and 1.65 x 10-9 nonsynonymous substitutions per site and per year on the average for all orthologous genes identified in the genomes. The rate of gene loss was found to be surprisingly low, with about one complete gene elimination per 5-10 million years.

  • Alsmark, Cecilia

    Comparative Genomics of Obligate and Facultative Intracellular Parasites

    2002.

    Abstract

    The α-proteobacteria Rickettsia prowazekii and Bartonella henselae are the causative agents of epidemic typhus and cat scratch disease respectively. Whereas R. prowazekii is an obligate intracellular parasite, B. henselae can live and proliferate both outside and inside the eukaryotic host cell. Besides the obvious medical interest to identify the complete gene set of two human pathogens, their genome sequences are also important for the study of evolutionary processes. Both R. prowazekii and B. henselae have small genomes, but their last common ancestor of these two bacteria was most likely a free-living organism with a substantially larger genome.

    The aim of this thesis is to compare the complete genomes of R. prowazekii and B. henselae and to decipher the evolutionary processes leading to the adaptation to an intracellular lifestyle. The working hypothesis was that the facultative intracellular B. henselae is an intermediate between a free living bacteria and the obligate R. prowazekii, which is corroborated. B. henselae has a broader biosynthetic repertoire than R. prowazekii, including the presence of genes for glycolysis and de novo biosynthesis of purines and pyrimidines. However, both bacteria have reduced gene sets for biosynthesis of amino acids and cofactors compared to free-living bacteria.

    Comparisons of gene order in bacteria reveal that several operons are well conserved between distantly related species. The genome sequences of R. prowazekii and B. henselae show that many of the operons that are usually conserved, are broken and rearranged in these species. One of the mechanisms of reductive evolution include intra-chromosomal recombination between repeated loci. This process expels one of the repeats and cause rearrangements in the gene order of the flanking regions. While the R. prowazekii genome almost completely lack repeated sequences, the B. henselae genome is rich in repeats. These repeats are, however, most often located within regions associated with pathogenicity islands. The higher number of scrambled operons, and the lower number of repeats, in R. prowazekii compared to B. henselae imply that the reductive process has gone further in the former species.

  • Behra, Phani Rama Krishna

    Insight into the evolution of the genus Mycobacterium

    2022.

    Abstract

    The genus Mycobacterium includes more than 190 species, and many cause severe diseases such as tuberculosis and leprosy. According to the "World Health Organization", in year 2019 alone, 10 million people developed TB, and 1.4 million died. TB had been in decline in developed countries, but made its reappearance as an opportunistic pathogen targeting immuno-compromised AIDS victims. Also, non-tuberculosis mycobacteria (NTM) infections have emerged as a major infectious agent in recent times. NTM occupy diverse ecological niches and can be isolated from soil, tap water, and groundwater. This thesis has investigated the Mycobacterium species from a genomic perspective, focusing on the biology of virulence factors, mobile genetic elements, tRNAs, and non-coding RNAs and their evolutionary distribution and possible relationship with phenotypic diversity. 

    As part of this study, we have sequenced 153 mycobacterial genomes, including type strains, environmental samples, isolates from hospital patients, infected fish, and outbreak samples in an animal facility at Uppsala University. We have provided a phylogenetic tree based on 387 (and 56) core genes covering most species (244 genomes) constituting the Mycobacterium genus. The core gene phylogeny resulted in 33 clades. Subsequently, we have covered different clade groups, such as, M. marinum, M. mucogenicum, M. chelonae and M. chlorophenolicum and investigated the NTM clade-specific genome diversity and evolution. 

    Our examination of non-coding genes showed that the total number of tRNA genes per species varies between 42 and 90. Among the species with more than 50 tRNAs, additional tRNA genes are likely acquired through horizontal gene transfer (HGT), as supported by the presence of closely linked HNH endonuclease gene and GOLLD RNA. We have explored the presence of selenocysteine utility and the gene for selenoprotein "formate dehydrogenase" among 244 mycobacterial genomes. 

    For the M. chlorophenolicum clade, we have explored genes with a role in the bioremediation process. Comparative genomics of M. marinum and M. chelonae clade groups suggest new clusters or subspecies. Mutational hotspots are relatively higher in M. marinum compared to that in M. tuberculosis and M. salmoniphilum. Relatively higher number of hotspots in M. marinum is likely related to its ability to occupy different ecological niches. Finally, the thesis uncovered IS elements, phage sequences, plasmids, tRNA, and ncRNA contributing to mycobacterial evolution.

    Open access
  • Andér, Martin

    Computational Analysis of Molecular Recognition Involving the Ribosome and a Voltage Gated K+ Channel

    2009.

    Abstract

    Over the last few decades, computer simulation techniques have been established as an essential tool for understanding biochemical processes. This thesis deals mainly with the application of free energy calculations to ribosomal complexes and a cardiac ion channel.

    The linear interaction energy (LIE) method is used to explore the energetic properties of the essential process of codon–anticodon recognition on the ribosome. The calculations show the structural and energetic consequences and effects of first, second, and third position mismatches in the ribosomal decoding center.

    Recognition of stop codons by ribosomal termination complexes is fundamentally different from sense codon recognition. Free energy perturbation simulations are used to study the detailed energetics of stop codon recognition by the bacterial ribosomal release factors RF1 and RF2. The calculations explain the vastly different responses to third codon position A to G substitutions by RF1 and RF2. Also, previously unknown highly specific water interactions are identified.

    The GGQ loop of ribosomal RFs is essential for its hydrolytic activity and contains a universally methylated glutamine residue. The structural effect of this methylation is investigated. The results strongly suggest that the methylation has no effect on the intrinsic conformation of the GGQ loop, and, thus, that its sole purpose is to enhance interactions in the ribosomal termination complex.

    A first microscopic, atomic level, analysis of blocker binding to the pharmaceutically interesting potassium ion channel Kv1.5 is presented. A previously unknown uniform binding mode is identified, and experimental binding data is accurately reproduced. Furthermore, problems associated with pharmacophore models based on minimized gas phase ligand conformations are highlighted.

    Generalized Born and Poisson–Boltzmann continuum models are incorporated into the LIE method to enable implicit treatment of solvent, in an effort to improve speed and convergence. The methods are evaluated and validated using a set of plasmepsin II inhibitors.

    Open access
  • Larsson, Pontus

    Computational Approaches to the Identification and Characterization of Non-Coding RNA Genes

    2009.

    Abstract

    Non-coding RNAs (ncRNAs) have emerged as highly diverse and powerful key players in the cell, the range of capabilities spanning from catalyzing essential processes in all living organisms, e.g. protein synthesis, to being highly specific regulators of gene expression. To fully understand the functional significance of ncRNAs, it is of critical importance to identify and characterize the repertoire of ncRNAs in the cell. Practically every genome-wide screen to identify ncRNAs has revealed large numbers of expressed ncRNAs and often identified species-specific ncRNA families of unknown function. Recent years' advancement in high-throughput sequencing techniques necessitates efficient and reliable methods for computational identification and annotation of genes. A major aim in the work underlying this thesis has been to develop and use computational tools for the identification and characterization of ncRNA genes.

    We used computational approaches in combination with experimental methods to study the ncRNA repertoire of the model organism Dictyostelium discoideum. We report ncRNA genes belonging to well-characterized gene families as well as previously unknown and potentially species-specific ncRNA families. The complicated task of de novo ncRNA gene prediction was successfully addressed by developing a method for nucleotide composition-based gene prediction using maximal-scoring partial sums and considering overlapping dinucleotides.

    We also report a substantial heterogeneity among human spliceosomal snRNAs. Northern blot analysis and cDNA cloning, as well as bioinformatical analysis of publicly available microarray data, revealed a large number of expressed snRNAs. In particular, U1 snRNA variants with several nucleotide substitutions that could potentially have dramatic effects on splice site recognition were identified.

    In conclusion, we have by using computational approaches combined with experimental analysis identified a rich and diverse ncRNA repertoire in the eukaryotes D. discoideum and Homo sapiens. The surprising diversity among the snRNAs in H. sapiens suggests a functional involvement in recognition of non-canonical introns and regulation of messenger RNA splicing.

    Open access
  • Torabi Moghadam, Behrooz

    Computational discovery of DNA methylation patterns as biomarkers of ageing, cancer, and mental disorders: Algorithms and Tools

    2017.

    Abstract

    Epigenetics refers to the mitotically heritable modifications in gene expression without a change in the genetic code. A combination of molecular, chemical and environmental factors constituting the epigenome is involved, together with the genome, in setting up the unique functionality of each cell type.

    DNA methylation is the most studied epigenetic mark in mammals, where a methyl group is added to the cytosine in a cytosine-phosphate-guanine dinucleotides or a CpG site. It has been shown to have a major role in various biological phenomena such as chromosome X inactivation, regulation of gene expression, cell differentiation, genomic imprinting. Furthermore, aberrant patterns of DNA methylation have been observed in various diseases including cancer.

    In this thesis, we have utilized machine learning methods and developed new methods and tools to analyze DNA methylation patterns as a biomarker of ageing, cancer subtyping and mental disorders.

    In Paper I, we introduced a pipeline of Monte Carlo Feature Selection and rule-base modeling using ROSETTA in order to identify combinations of CpG sites that classify samples in different age intervals based on the DNA methylation levels. The combination of genes that showed up to be acting together, motivated us to develop an interactive pathway browser, named PiiL, to check the methylation status of multiple genes in a pathway. The tool enhances detecting differential patterns of DNA methylation and/or gene expression by quickly assessing large data sets.

    In Paper III, we developed a novel unsupervised clustering method, methylSaguaro, for analyzing various types of cancers, to detect cancer subtypes based on their DNA methylation patterns. Using this method we confirmed the previously reported findings that challenge the histological grouping of the patients, and proposed new subtypes based on DNA methylation patterns. In Paper IV, we investigated the DNA methylation patterns in a cohort of schizophrenic and healthy samples, using all the methods that were introduced and developed in the first three papers.

    Open access
  • Manzetti, Sergio

    Computational Ecotoxicology

    2022.

    Abstract

    Human society has progressed by polluting ecosystems since at least the early industrial revolution. Large amounts of harmful chemical compounds have been dispersed in soils, seas, ground waters and wildlife habitats by industrial and anthropomorphic activities over the last two centuries, leading to a persistent toxicological load on the environment. Pollution is a threat to biodiversity, to the health of ecosystems, and to all living organisms. Advances in environmental sciences are needed so that pollutants can be distinguished from harmless compounds. New methods could ease the enormous task of sorting out hazardous chemicals, and also facilitate the study of existing problems in ecotoxicology, which are often hampered by insufficient data. In our research, we apply the methods of computational chemistry to predict the interactions of various toxins, carcinogens, nanoparticles and xenobiotics with proteins, DNA, and cell membranes. Methods such as molecular dynamics simulations, docking, and quantum chemistry are at the core of these studies, each having its role in facilitating the enormous task of transforming in vitro ecotoxicology to in silico ecotoxicology. We perform detailed studies of a few compounds and receptors, as well as larger, more comprehensive groups of compounds. We also outline approaches for drawing computational conclusions about the molecular behaviour of various potential environmental toxins by modelling their interactions with DNA and proteins, and we use partition coefficients to describe their ability to permeate the cell membrane. Methods for studying the purification of pollutants from essential sources, such as water, are proposed. We also investigate the emerging problem of nanoparticle pollution and propose computational approaches to model the formation of nanoparticles from combustion emissions and the interactions of such particles with atmospheric components.

    Open access
  • Shamsudin Khan, Yasmin

    Computational methods for calculating binding free energies of ligands in COX-1

    2014.

    Open access
  • Almlöf, Martin

    Computational Methods for Calculation of Ligand-Receptor Binding Affinities Involving Protein and Nucleic Acid Complexes

    2007.

    Abstract

    The ability to accurately predict binding free energies from computer simulations is an invaluable resource in understanding biochemical processes and drug action. Several methods based on microscopic molecular dynamics simulations exist, and in this thesis the validation, application, and development of the linear interaction energy (LIE) method is presented.

    For a test case of several hydrophobic ligands binding to P450cam it is found that the LIE parameters do not change when simulations are performed with three different force fields. The nonpolar contribution to binding of these ligands is best reproduced with a constant offset and a previously determined scaling of the van der Waals interactions.

    A new methodology for prediction of binding free energies of protein-protein complexes is investigated and found to give excellent agreement with experimental results. In order to reproduce the nonpolar contribution to binding, a different scaling of the van der Waals interactions is neccesary (compared to small ligand binding) and found to be, in part, due to an electrostatic preorganization effect not present when binding small ligands.

    A new treatment of the electrostatic contribution to binding is also proposed. In this new scheme, the chemical makeup of the ligand determines the scaling of the electrostatic ligand interaction energies. These scaling factors are calibrated using the electrostatic contribution to hydration free energies and proposed to be applicable to ligand binding.

    The issue of codon-anticodon recognition on the ribosome is adressed using LIE. The calculated binding free energies are in excellent agreement with experimental results, and further predict that the Leu2 anticodon stem loop is about 10 times more stable than the Ser stem loop in complex with a ribosome loaded with the Phe UUU codon. The simulations also support the previously suggested roles of A1492, A1493, and G530 in the codon-anticodon recognition process.

    Open access
  • Bauer, Paul

    Computational modelling of enzyme selectivity

    2017.

    Abstract

    Enantioselective reactions are one of the ways to produce pure chiral compounds. Understanding the basis of this selectivity makes it possible to guide enzyme design towards more efficient catalysts. One approach to study enzymes involved in chiral chemistry is through the use of computational models that are able to simulate the chemical reaction taking place. The potato epoxide hydrolase is one enzyme that is known to be both highly enantioselective, while still being robust upon mutation of residues to change substrate scope. The enzyme was used to investigate the epoxide hydrolysis mechanism for a number of different substrates, using the EVB approach to the reaction both in solution and in several enzyme variants. In addition to this, work has been performed on new ways of performing simulations of divalent transition metals, as well as development of new simulation software.

    Open access