Första titt på generalistiska anor från bakterieöversättningsmaskiner av Suparna Sanyals grupp
2021-04-29
Molecular biologists travel back in time 3 billion years
A research group working at Uppsala University has succeeded in studying ‘translation factors’ – important components of a cell’s protein synthesis machinery – that are several billion years old. By studying these ancient ‘resurrected’ factors, the researchers were able to establish that they had much broader specificities than their present-day, more specialised counterparts.
In order to survive and grow, all cells contain an in-house protein synthesis factory. This consists of ribosomes and associated translation factors that work together to ensure that the complex protein production process runs smoothly. While almost all components of the modern translational machinery are well known, until now scientists did not know how the process evolved.
The new study, published in the journal Molecular Biology and Evolution, took the research group led by Professor Suparna Sanyal of the Department of Cell and Molecular Biology on an epic journey back into the past. A previously published study used a special algorithm to predict DNA sequences of ancestors of an important translation factor called elongation factor thermo-unstable, or EF-Tu, going back billions of years. The Uppsala research group used these DNA sequences to resurrect the ancient bacterial EF-Tu proteins and then to study their properties.
The researchers looked at several nodes in the evolutionary history of EF-Tu. The oldest proteins they created were approximately 3.3 billion years old.
“It was amazing to see that the ancestral EF-Tu proteins matched the geological temperatures prevailing on Earth in their corresponding time periods. It was much warmer 3 billion years ago and those proteins functioned well at 70°C, while 300 million year old proteins were only able to withstand 50°C,” says Suparna Sanyal.
The researchers were able to demonstrate that the ancient elongation factors are compatible with various types of ribosome and therefore can be classified as ‘generalists’, whereas their modern descendants have evolved to fulfil ‘specialist’ functions. While this makes them more efficient, they require specific ribosomes in order to function properly. The results also suggest that ribosomes probably evolved their RNA core before the other associated translation factors.
“The fact that we now know how protein synthesis evolved up to this point makes it possible for us to model the future. If the translation machinery components have already evolved to such a level of specialisation, what will happen in future, for example, in the case of new mutations?” ponders Suparna Sanyal.
The fact that researchers have demonstrated that it is possible to recreate such ancient proteins, and that extremely old translation factors work well with many different types of ribosome, indicates that the process is of potential interest for protein pharmaceuticals research. If it turns out that other ancient components of protein synthesis were also generalists, it might be possible to use these ancient variants to produce therapeutic proteins in future with non-natural or synthetic components.
For more information please contact Suparna Sanyal, tel: + 46 (0)73-7806426, email: Suparna.Sanyal@icm.uu.se
Arindam De Tarafder, Narayan Prasad Parajuli, Soneya Majumdar, Betül Kaçar, Suparna Sanyal (2021) Kinetic Analysis Suggests Evolution of Ribosome Specificity in Modern Elongation Factor-Tus from ‘Generalist’ Ancestors, Molecular Biology and Evolution, msab114, DOI: 10.1093/molbev/msab114
Nyheter
-
Proteinsyntes i Giardia med cryo-EM
-
Suparna Sanyal’s grupp publicerar i Nature Communications
-
Hjärnäpplet till Johan Elf och Özden Baltekin
-
Aminoff Prize rewards explosive studies of biological macromolecules
-
Suparna Sanyal har utsetts till excellent lärare
-
Lovande molekyl för läkemedel mot coronavirus
-
Elf's grupp publicerar i Science
-
Elf's grupp publicerar i Nature
-
Upp Talk Weekly
-
Första titt på generalistiska anor från bakterieöversättningsmaskiner av Suparna Sanyals grupp
-
Suparna Sanyal presenterade mervärdet av internationella bedömare under Uppsala universitets konferens
-
Tomas Ekeberg porträtteras i "Curie"
-
Enzymet från Svandammen lär oss om fagers försvar
-
Madeleine Walz och David van der Spoel visar hur joner kan gå mot strömmen
-
”Antikroppar - på gott och ont” krönika av Sandra Kleinau
-
Masterstudenter Letian Bao och Carolin Vogel publicerar artiklar som förbättrar kromoproteiner och små RNA
-
Gregori Aminoff priset 2021 utdelas till Janos Hajdu
-
Magnus Johansson får ERC Starting Grant
-
Suparna Sanyal fick projektbidrag från Vetenskapsrådet för forskning om coronavirus och covid-19
-
Deindl's grupp tillsammans med Elf's grupp publicerar i Nature
-
Hugo Gutierrez-de-Teran bidrar till framtidens strukturbaserade läkemedelsdesign
-
Sanna Koskiniemi utnämns till ordförande i Sveriges unga akademi
-
Åqvist grupp publicerar i Nature Communications
-
Carlsson grupp i internationellt samarbete kring covid-19
-
Staffan Svärd valdes in i Kungliga Vetenskapsakademien
-
Komorowski's grupp, del av Pan Cancer konsortiet, publicerar i Nature tillsammans med professor Claes Wadelius, IGP
-
David van der Spoel blev intervjuad
-
Bioinformatiklaboratoriet publicerar i Nature Communications
-
Sanyal och Aqvist grupp rapporterar om ny metod för att blockera nya proteiners födelse i bakterier.
-
Norblad-Ekstrand-medaljen till Inger Andersson, professor emeritus i molekylär biofysik
-
I Science beskriver Sebastian Deindl och Greg Bowman hur specialiserade proteiner packar DNA för att reglera hur gener slås av och på.
-
Sanyal-grupp i ICM avslöjar mekanismen för korrekt avkodning genom att studera hur den anti-TB-antibiotikum viomycin inducerar fel i translation
-
En ny studie av Deindl-gruppen belyser DNA-rörelser under nukleosomreformering
-
Sanna Koskiniemi får ERC Starting Grant
-
Ettemas grupp klargör mitokondriellt ursprung i Nature journal
-
Johanssons och Elfs grupp rapporterar om ny metod för spårning av tRNA-kinetik i levande celler
-
Lynn Kamerlin får The Svedbergpriset 2018
-
I Molecular Cell rapporterar Sebastian Deindls forskargrupp hur onkogenen och kromatinomvandlaren ALK1 kan slås av och på.
-
Elf's forskargrupp mäter söktid för mål-DNA med CRISPR / Cas9 i Science journal
-
Selmer group explains how an enzyme evolved bifunctionality; atomic level multitasking
-
Erik Holmqvist och Mikael Sellin får Ingvar Carlsson Award
-
Lynn Kamerlin får anslag från Human Frontier Science programmet
-
Bidragsbeslut naturvetenskap och teknikvetenskap 2016 gynnar grupper som leds av Suparna Sanyal och Johan Elf
-
Forster group chemistry reveals unexpected speed barrier in protein synthesis
Link to the current article in the Journal of the American Chemical Society entitled
"Ribosomal Peptide Syntheses from Activated Substrates Reveal Rate Limitation by an Unexpected Step at the Peptidyl Site" at:
-
The microbe that helped make us published in Nature
A microbe no one has even seen could explain our origins.
Link to the article at BBC.com
Link to Nature - Complex archaea that bridge the gap between prokaryotes and eukaryotesLink to Nature - Asgard archaea illuminate the origin of eukaryotic cellular complexity
-
ERC Starting Grant till Sebastian Deindl
-
Celldelning är snabbare än DNA-kopiering
-
Din egengjorda medicin
-
Avmystifierad entropi kan förklara enzymreaktioner
-
Tomas Ekebergs bild av ett jättevirus var en av världens bästa vetenskapliga bilder förra året.