The Dynamics of SecM-Induced Translational Stalling

Albert Tsai,1,2,4 Guy Kornberg,1,4 Magnus Johansson,1 Jin Chen,1,2 and Joseph D. Puglisi1,3,*

1Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
2Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
3Department of Applied Physics, Stanford University, Stanford, CA 94305-4090, USA
4Co-first author
*Correspondence: puglisi@stanford.edu
http://dx.doi.org/10.1016/j.celrep.2014.04.033
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

SUMMARY

SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP) using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.

INTRODUCTION

Proteins are synthesized by the ribosome by selecting the correct aminoacyl-tRNA, catalyzing peptide bond formation, and advancing one codon along the mRNA repetitively during translation elongation (Aikten et al., 2010; Chen et al., 2012a). Direct regulation of protein synthesis allows rapid adaptation to environmental changes within seconds to minutes. In addition to variable translation factors and tRNA abundance, the nascent polypeptide chain itself can modulate elongation (Tenson and Ehrenberg, 2002), indicating a dynamic interplay between the nascent chain and the ribosome. Stall sequences within nascent chains dramatically alter elongation, leading to a prolonged arrest of translation and controlling expression of cotranscribed genes (Ito and Chiba, 2013; Oliver et al., 1998).

The SecM stall sequence from Escherichia coli relies solely on peptide-ribosome interactions to stall elongation (Nakatogawa and Ito, 2001; Yap and Bernstein, 2009). In secretion-deficient conditions, SecM-induced stalling upregulates SecA expression, an ATPase secretion protein (McNicholas et al., 1997; Schmidt et al., 1988; Yap and Bernstein, 2011). However, when the cell is secretion competent, SecM-stalled ribosomes are docked to the translocon machinery and the nascent chain is “pulled” to relieve the stall (Butkus et al., 2003). The stability and simplicity of SecM has made it a tool to anchor the nascent peptide chain to the 50S subunit in bulk and single-molecule experiments (Evans et al., 2005; Uemura et al., 2008).

Bulk biochemical studies have identified a 17-amino-acid sequence 150FSTPVWISQAQGIRAGP166 near the C terminus of SecM as the minimal stall sequence (Nakatogawa and Ito, 2002). It resides within the 50S subunit exit tunnel when stalling occurs. A growing body of evidence suggests that the exit tunnel, thought previously to be an inert passage way, interacts with the nascent peptide to arrest translation (Seidelt et al., 2009; Vazquez-Laslop et al., 2008, 2010; Wilson and Beckmann, 2011). Arg163 and Pro166 are essential; mutations of either amino acid completely abolish stalling (Nakatogawa and Ito, 2002). Bulk fluorescence resonance energy transfer (FRET) measurements of peptide length within the tunnel revealed that the C terminus is compacted, induced by interactions further upstream on the nascent chain and the constriction in the exit tunnel formed by the large subunit proteins L4 and L22 (Woolhead et al., 2006). A cryoelectron microscopy (cryo-EM) structure has suggested that the SecM peptide interacts with the tunnel entrance to remodel the geometry in the peptidyl transferase center (PTC) on the 50S subunit by moving the P-site tRNA away from the A-site tRNA (Bhushan et al., 2011). Specifically, Arg163 may interact with A2062 and U2585 of the 23S rRNA, which moves the CCA end of the P-site tRNA away from the CCA end of the A-site tRNA (Gumbart et al., 2012). The increased distance between the tRNAs slows peptide bond formation rate, and the rigid structure of the terminal proline then arrests translation. These elegant studies have thus identified the peptide sequence and portions of the exit tunnel anatomy necessary for stalling.

However, the proposed mechanisms implicitly assume that the final state captures stalling in its entirety. These previous studies isolated and observed stalled ribosomes hours after they had begun translation, whereas translation of the SecM sequence itself only requires a few minutes. Whether stalling abruptly stops the ribosome when all amino acids are moved into the exit tunnel or progressively changes the dynamics of elongation as the sequence is translated is not known. Previous studies have also focused on identifying a single stall site on the mRNA, inferring that the stalled state is uniform. If stalling
involves a gradual buildup with subpopulations of varying stability, a distribution of stall sites is possible. Thus, the dynamic pathways of stalling remain undetermined; the timescales for the ribosome to enter and exit the stalled state(s) and the spatial distribution of ribosomes on the SecM sequence have not been defined.

Single-molecule fluorescence methods can probe these mechanisms with dynamics occurring over hundreds of milliseconds to seconds (Petrov et al., 2012), observing less stable stalling locations along the SecM sequence masked by bulk averaging. Here, we have leveraged our ability to track directly conformational and compositional dynamics of translating ribosomes to observe how SecM-mediated stalling unfolds. Our results show that stalling is a dynamic process by which several key interactions work cooperatively within a defined time-window to reduce elongation rates over a distribution of positions along the SecM mRNA.

RESULTS

Bulk Translation Experiments Confirm that SecM Reduces Elongation Rates

To confirm stalling by SecM, bulk translation rates were measured by the incorporation of tritium-3H-labeled amino acids. Two mRNAs were prepared: a stall-competent sequence (3H-optimized SecM sequence) and readthrough sequence that has the critical arginine mutated (3H-optimized R15A sequence) to abrogate stalling (Nakatogawa and Ito, 2002). Both sequences include unique codons at Phe2 (immediately after the start codon), Lys22 (three codons after the stall sequence), and Leu30 (at the end of the coding sequence). After starting the elongation reaction by mixing 70S IC (initiation complex) with a factor mix containing charged total tRNA (30 M total GTP). We first monitored translation on the gp32 mRNA (gene product 32 of the T4 bacteriophage) to validate application of the intersubunit FRET signal for a complex mRNA and as a standard for unhindered translation. As shown in Figures S1C and S1D, more than 30% of the ribosomes reach beyond codon 30 within 5 min, at a constant rate of 3–4 s per codon (1.3–1.8 s in the nonrotated and 1.8–2.2 s in the rotated state). The addition of 100 μM of spectinomycin (Figures S1E and S1F), a translocation blocker, increases the rotated state lifetime by 3-fold to 5.8–7.3 s, whereas the nonrotated state remains unchanged (Chen et al., 2013). This slowdown compounds over each codon; only 10% of ribosomes reach codon 30 within 5 min. With 1 μM of erythromycin, a sharp drop in ribosomes translating past ten codons is observed, with no ribosomes reaching codon 30 (Figures S1G and S1H). This is consistent with previous observation that erythromycin binds in the exit tunnel and blocks peptide synthesis beyond 6–10 amino acids (Aitken and Puglisi, 2010; Tenson et al., 2003). These results confirm our ability to track elongation in real time on heteropolymeric mRNAs with codon resolution up to 20 codons and to observe specific inhibition of elongation induced by drugs.

Translation of SecM Leads to Codon-Specific Inhibitions of the Elongation Cycle

Applying this signal to the SecM stall sequence, a significantly different behavior compared to gp32 was observed. Ninety-three percent of ribosomes do not translate past codon 22...
However, 45% of the ribosomes translate beyond the terminal proline (Pro18), with a sharp drop in actively translating ribosomes between codons 18–22. Over the first 15 codons, translation proceeds efficiently at 4–5 s per codon, with short lifetimes in both the nonrotated (1.8–2.2 s) and rotated (2.2–2.9 s) states. Translation rates slow 3- to 4-fold over codons 16–23 to 15–20 s per codon. The nonrotated lifetimes peak over codons 17–18 and 20–23. The rotated lifetimes remain long between codons 16–22. Lifetimes are fitted to single-exponential distributions, and error bars represent SEM.

See Figure S1 for bulk translation and control experiments.

(Figure 1B) within 5 min. However, 45% of the ribosomes translate beyond the terminal proline (Pro18), with a sharp drop in actively translating ribosomes between codons 18–22. Over the first 15 codons, translation proceeds efficiently at 4–5 s per codon, with short lifetimes in both the nonrotated (1.8–2.2 s) and rotated (2.2–2.9 s) states (Figure 1C). Translation of the subsequent codons are 3- to 4-fold slower, at 15–20 s per codon. Beginning at codon 17, the nonrotated state lifetimes increase by 4-fold to 6.8–11 s, and beginning at codon 16, the rotated state lifetimes increase by 3-fold to 8.0–10 s. Two peaks are apparent in the nonrotated state lifetimes spanning codons 17–18 and 20–23. Conversely, the rotated state lifetimes remain consistently high between codons 16 and 23. For the 7% of ribosomes that proceeded beyond codon 22, translation rates recover after codon 22. These results suggest stalling requires four to eight codons to fully unfold, with the process beginning before the entire SecM sequence has been translated. Additionally, SecM significantly slows elongation rates over codons 17–23 and not over a single stall site. Elongation rates of ribosomes that read through the stall eventually recover.

Adding ten codons prior to the stall sequence (SecM +10 mRNA; Figures 2A and 2B) results in a corresponding ten codon shift in translational slowdown to codons 26–33. Doubling the concentration of total tRNA (2× tRNA; Figures 2C and 2D) to 5 µM decreases the nonrotated lifetimes to 1.0–1.2 s (~4 s per codon) and doubling EF-G (2× EF-G; Figures 2E and 2F) to
320 nM decreases the rotated lifetimes to 1.3–1.8 s (~3 s per codon). Nevertheless, their behavior around codons 16–23 remains unchanged compared to our standard conditions, suggesting that the decrease in elongation rate is not affected by changes in ligand concentrations but rather involves intrinsic nascent-peptide/ribosome interactions.

Observing tRNA Transit Dynamics Show Decreased Elongation Rates and Stable Incorporation of tRNA Three to Four Codons Beyond the Terminal Proline on SecM

Intersubunit FRET shows ribosomes translating up to four codons past the terminal Pro18; however, most ribosomes do no proceed past Phe21 or Lys22. To confirm the elongation dynamics within this region, we applied an independent signal, tracking Cy5-labeled tRNAPhe transit through the ribosome as described in Uemura et al. (2010). These experiments were performed with 200 nM of Cy5-labeled tRNAPhe in combination with 2.5 μM dark total tRNA (ΔPhe) and 160 nM EF-G. Phe tRNA binding to the ribosome results in a pulse of Cy5 fluorescence (Figure 3A). The SecM mRNA and a truncated mRNA with all codons after Phe21 removed were tested. Both mRNAs encode Phe2 and Phe21. An intersubunit FRET experiment using the truncated mRNA shows that ribosomes have difficulty translating up to the last codon (Phe21) of the truncated mRNA within 5 min (Figures S2A and S2B). Fifty percent of the ribosomes on the SecM mRNA show two pulses, suggesting the incorporation of both Phe2 and Phe21, whereas the truncated mRNA suppressed the second Cy5 pulse, commensurate with the intersubunit FRET experiment (Figure 3B). A small fraction shows additional binding signals, which are likely unstable binding attempts of a labeled tRNA to the A site that did not result in successful tRNA accommodation. Doubling both the total tRNA and EF-G concentrations...
(Figure 3C) yields a modest increase in molecules, showing a second Phe pulse for both mRNAs. Compared to the short Phe2 pulse (5 s), the Phe21 pulse on the SecM mRNA is long (30 s) (Figure 3D). This lifetime is close to the photobleaching lifetime of Cy5-labeled tRNAs, which provides a lower bound for stability of the tRNA on the ribosome. The lifetime of the Phe2 pulse on the truncated mRNA is similarly short at 8 s, whereas the lifetime of the Phe21 pulse has a large error because of the low number of molecules. The time required to translate from Phe2 to Phe21 for the full-length SecM mRNA, calculated by the time between the two Cy5 pulses, is 100 s (Figure 3E), consistent with intersubunit FRET experiments (130 s). Doubling the tRNA and EF-G concentration decreases the Phe2-Phe21 translation time to 40 s. The Phe2-Phe21 translation time for the truncated mRNA shows a large error because of the small number of ribosomes showing a second Phe pulse.

Additional tRNA transit experiments were conducted with a Cy2-labeled tRNA^Lys on the SecM mRNA and the R15A read-through mutant with 5 μM dark total tRNA (ΔPhe ΔLys), 200 nM each of Cy5-labeled tRNA^Phe and Cy2-labeled tRNA^Lys, and 320 nM EF-G. Most ribosomes on both mRNAs exhibit up to two pulses at Phe2 and Phe21 (55% for SecM and 68% for R15A), but only the R15A mutant shows significant Ly5 tRNA pulses at Lys22 and Lys24 (8% for SecM and 68% for R15A; Figures S2C and S2D). Lifetimes of the labeled tRNA pulses on the SecM mRNA for both Phe21 (37 s) and Lys22 (20 s) are near the photobleaching lifetime of their respective dyes (Figure S2E). For the R15A mRNA, all tRNA lifetimes are short, around 2–6 s. On the SecM mRNA, the times between Phe2-Phe21 (51 s) and Phe21-Lys22 (16 s) are consistent with the reagent concentrations and the distances between the codons (Figure S2F). For R15A, the times between pulses are 56 s for Phe2-Phe21, 7.2 s for Phe21-Lys22, and 15 s for Lys22-Lys24. These results show that some ribosomes can translate SecM mRNA up to Phe21, even Lys22. The long lifetimes of Phe21 and Lys22, as well as the longer Phe21-Lys22 time on SecM compared to the R15A mutant, suggest significantly decreased elongation rates at these codons, as seen in the intersubunit FRET measurements.

The Terminal Proline Must Specifically Be at Codon 18 in Order to Precipitate Stalling

Changes to elongation dynamics begin three codons before Pro18. To specify the role of Pro18 in stalling, we performed intersubunit FRET experiments on a Pro18 to Ala mRNA (P18A). This mRNA retains Pro19; therefore, this experiment additionally probes if proline must be precisely at codon 18. Despite retaining Pro19, stalling is abrogated in P18A (Figure 4A), with 50% of ribosomes translating past codon 22. Similar lengthening in lifetimes of both the nonrotated and rotated state (Figure 4B) to the wild-type SecM is observed up to Gly17. Nevertheless, the nonrotated state lifetimes return to ~2 s immediately thereafter. The rotated state lifetimes return to ~3 s by codon 20 and are shorter than the wild-type sequence (4.5–7.5 s versus 5.3–10 s). Azetidine-2-carboxylic acid (Aze), a proline analog, has been shown to hinder stalling (Nakatogawa and Ito, 2001). Translating the wild-type SecM mRNA using total tRNA changed with Aze in place of Pro leads to a translation profile similar to P18A (Figures 4C and 4D), both in the abrogation of stalling and the lifetimes over each codon. In contrast, mutating only Pro19 to Ala (P19A; Figures 4E and 4F) does not abolish stalling and has no discernable differences compared to the wild-type sequence. Therefore, the positioning of proline within the A-site at exactly codon 18 is central for stalling. Its incorporation then leads to greatly reduced elongation rates between codons 18–23.

Arg15 Is Responsible for Increasing the Nonrotated State Lifetimes in Advance of Pro18 Arrival

Arginine at codon 15 is the other critical amino acid required for stalling. In all intersubunit FRET experiments described above, the nonrotated lifetimes increase when Arg15 enters the exit tunnel entrance (two codons after incorporation). Thus, Arg15 was mutated to Ala (R15A) to probe if Arg15 is responsible for these lifetime increases.

R15A mutation prevents stalling: nearly 60% of ribosomes translate past codon 22 (Figure 5A). The nonrotated state lifetimes remain constant at 1.5–2.0 s (Figure 5B). Lengthened rotated state lifetimes (4.6–7.5 s) are still seen between codons 16–19, but they are less severe than the wild-type (6.3–10 s). Replacing the positively charged Arg15 with a negatively charged Glu (R15E) (Figures S3A and S3B) or positively charged Lys (R15K) (Figures S3C and S3D) does not restore stalling and translation dynamics remains similar to R15A. These results suggest that Arg interacts with the exit tunnel entrance through its unique properties, such as its delocalized charge or ability to form specific hydrogen bonds. Mutating Arg15 removes increases in the nonrotated lifetimes over codons 17 and 18 persevered by the P18A mutant. Therefore, Arg15 interaction with the exit tunnel is likely responsible those effects, perhaps indicating difficulty in peptide bond formation.

SecM Stalled Ribosomes Are Resistant to Peptide Cleavage by Puromycin

Prior work showed that SecM-stalled ribosomes are in conformational states resistant to peptide cleavage by the antibiotic puromycin (Muto et al., 2006). We probed peptide bond formation rates of our ribosome though puromycin release with our intersubunit FRET signal on the minimal SecM sequence or the (6FK) mRNA. The (6FK) mRNA codes for six repeating Phe-Lys codons, a stop codon, and four more Phe codons. Ribosomes are given 5 min to translate their respective sequences and either stall because of the SecM sequence or over the stop codon on 6FK because of a lack of release factors. Puromycin causes a permanent nonrotated to rotated (high FRET to low FRET) state transition as it cleaves off the peptide from the Psite tRNA (Marshall et al., 2008). In these experiments, the quencher on the 50S was replaced with Cy5 so that the FRET efficiency can be accurately quantified.

We delivered 500 μM of puromycin to 70S complexes stalled on either the (6FK) mRNA or our SecM mRNA (Figure S3E). On the (6FK) mRNA, a high-to-low FRET transitions is clearly observed for each trace, with an average time of 20.4 ± 5.3 s (fitted to single-exponential distribution; error is SEM; n = 117). Ribosomes over SecM do not display any high-to-low FRET transitions as it cleaves off the peptide from the Psite tRNA.
Figure 3. tRNA Transit Experiments Show Stable tRNA Incorporation beyond the Terminal Proline and Reduced Elongation Rates

(A) Translating with 200 nM of Cy5-labeled tRNAPhe, accommodation of the tRNA can be tracked through stable Cy5 pulses colocalized to a 30S-Cy3B (Uemura et al., 2010). The tRNA remains on the ribosome for another round of elongation and dissociates once moved into the E site, whose dwell time thus measures the elongation rate. The SecM mRNA contains 32 codons after Phe21, whereas the SecM 3'-truncated mRNA ends exactly at Phe21. The Phe codons (2 and 21) are marked in red.

(legend continued on next page)
transitions. Instead, most traces end with the Cy5 signal photobleaching with an average lifetime of 69 ± 15 s (fitted to single-exponential distribution; error is SEM; $n = 90$), suggesting puromycin cannot attack the P-site tRNA and form a peptide bond in those ribosomes within 5 min. Thus, the increased nonrotated state lifetimes likely stem from reduced peptide bond formation rates when the ribosome translates SecM.

The N Terminus of the SecM Sequence Is Responsible for the Increase in Rotated State Lifetimes in Advance of Both Arg15 and Pro18

The mutation experiments have demonstrated that whereas both Pro18 and Arg15 are essential for stalling, they are not responsible for the lengthening of the rotated state lifetimes around codons 16–19, perhaps suggesting barriers to

Figure 4. Proline Must be Positionated at Codon 18 in Order to Precipitate Stalling

(A) The P18A (Pro18 to Ala) mutant ($n = 231$), despite retaining Pro19, allows 50% of ribosomes to translate past codon 22.

(B) The lifetimes of each state is similar to the wild-type SecM up to codon 17, but the nonrotated state lifetimes quickly recover thereafter, and lengthening of the rotated state lifetimes is less.

(C) Translating SecM with total tRNA charged with Aze (azetidine-2-carboxylic acid) in place of Pro prevents stalling ($n = 293$).

(D) The time to translate each codon is very similar to the P18A mutant.

(E) The P19A mutant ($n = 276$) behaves exactly like the wild-type sequence, inducing stalling between codons 18–22.

(F) The lifetimes per codon profile of P19A is similar to the wild-type SecM. Lifetimes are fitted to single-exponential distributions, and error bars represent SEM.

The N Terminus of the SecM Sequence Is Responsible for the Increase in Rotated State Lifetimes in Advance of Both Arg15 and Pro18

The mutation experiments have demonstrated that whereas both Pro18 and Arg15 are essential for stalling, they are not responsible for the lengthening of the rotated state lifetimes around codons 16–19, perhaps suggesting barriers to
translocation. The N-terminal region of the SecM nascent peptide likely interacts with the L4-L22 constriction point in the exit tunnel, leading to peptide compaction (Woolhead et al., 2006). To investigate if this region is responsible for the increased rotated state lifetimes, the first nine codons of the SecM mRNA (Δ2-10) were deleted, while the rest of the sequence was retained.

Despite maintaining the critical Arg and Pro, Δ2-10 shows no stalling with close to 80% of ribosomes translating past codon 13 (Figure 5C). Furthermore, the lifetimes of the two ribosomal conformational states are not increased, remaining at approximately 2 s for the nonrotated state and 3 s for the rotated state (Figure 5D). This suggests that the N-terminal region of SecM lengthens the rotated state between codons 16 to 19, without which Arg and Pro cannot exert their effects.

DISCUSSION

Employing diverse single-molecule fluorescence signals, we observed translation of the SecM sequence with codon resolution over 5 min, a highly relevant window to the process in vivo. We directly tracked stalling through ribosome conformational changes, tRNA binding, and EF-G binding, without extensive steps to isolate stalled ribosomes. In all of our signals, we observed clear effects of stalling. We propose that SecM stalls by significantly reducing translation rates, tightly linking stalling to elongation dynamics.

SecM-Induced Peptide Compaction Increases the Energy Barrier to Translocation

As the rotated state ends with EF-G-catalyzed translocation, we examined whether SecM interferes with EF-G binding or lengthens the lifetime through other means. An intersubunit FRET experiment using Cy5-labeled EF-G (160 nM) was performed, allowing cross-correlation of ribosome conformation to the binding of EF-G (Figure 6A), as described (Chen et al., 2013).

Translocation initially occurs within an average of 1.5–2 EF-G binding attempts to the rotated ribosome (Figure 6B). Beyond codon 15, EF-G binding attempts increase, peaking at four attempts over codon 17. It remains elevated at ~3.5 attempts thereafter. However, the binding frequency of EF-G to the rotated ribosome (Figure 6C) remains at 0.4–0.5 s⁻¹. Likewise, the average lifetimes of EF-G on the rotated ribosome (Figure 6D) is constant at 0.10–0.15 s. Thus, the SecM sequence increases the barrier to translocation, requiring increased EF-G sampling without inhibiting EF-G binding to the ribosome.
abrogates stalling. Specifically, we investigated the kinetic roles of three critical elements in order to form a dynamic mechanism: the N-terminal that induce peptide compaction (Woolhead et al., 2006), Arg15 that interacts with the tunnel entrance, and Pro18 near the C terminus (Nakatogawa and Ito, 2002). Our results lead to the model outlined below.

When the ribosome encounters the SecM sequence, it translates the first 15 codons efficiently (Figure 7A). The nascent peptide then compacts because of interactions with the constriction point of the 50S exit tunnel formed by L4 and L22 (Figure 7B). The mechanical stress of compaction is transduced through the nascent chain and/or the tunnel, leading to an increased energy barrier to translocation, manifested as lengthened rotated state lifetimes and increased EF-G binding attempts before translocation.

This stress limits the conformational freedom of the nascent chain, constraining Arg15 (Figure 7C) to interact with rRNA near the tunnel entrance, which includes A2062 and U2585 (Bhushan et al., 2011; Gumbart et al., 2012). This alters the geometry of the tRNAs in the peptidyl transferase center (PTC), leading to the lengthened nonrotated state lifetime starting from codon 15. This specifically requires Arg and likely stems from its delocalized positive charge (for stacking and charge-charge interactions) and its ability to form two hydrogen bonds.

Pro18 then precipitates stalling, through the intrinsically slower peptide bond formation rates of Pro (Muto et al., 2006; Pavlov et al., 2009) and/or the rigidity that Pro imposes on the nascent chain backbone (Figure 7D). That mutating Pro18, but not Pro19, abolished stalling and that translating SecM with Aze, also containing a secondary amine group, abolished stalling, suggest that stalling arises from the specific conformational properties of Pro18. The result is a heavily remodeled tRNA geometry in the PTC, leading to very low elongation rates (Figure 7E). Accordingly, SecM stalling is a dynamic phenomenon that involves precisely tuned interactions over the tunnel entrance and the constriction point formed by L4 and L22 at the minimum.

SecM Stalls Ribosomes in a Heterogeneous Population over Different Positions on the mRNA
The extensive period of reduced elongation rates leads to a distribution of stalling ribosomes over 3–4 codons (codons 19–21) after the terminal proline. That some ribosomes can elongate beyond Pro18 is corroborated by both bulk translation...
experiments, showing significant Lys22 incorporation, and labeled tRNA transit experiments, with ribosomes stably incorporating Phe21 and Lys22 tRNAs. Interestingly, most SecM homologs across different species of prokaryotes identified in Yap and Bernstein (2009) retain three to five codons past the terminal proline before a stop codon, perhaps to provide a buffer zone.

These results seem to contradict previous biochemical studies, which suggested that SecM-stalled ribosomes uniformly contain Gly17 in the P site (Muto et al., 2006; Vázquez-Laslop et al., 2010). Mechanisms have been proposed, fitting cryo-EM densities of the nascent chain in stalled ribosomes with a poly-alanine backbone assuming that Gly is attached to the P-site tRNA (Gumbart et al., 2012). This discrepancy may stem from the long timescales required before stalled ribosomes can be probed, thereby enriching for very stably stalled ribosomes at the Gly codon.

Ribosomes that did not stall at Gly would move away from the stall region given the 1 hr timescale. The full-length SecM sequence used in both studies has a stop codon four codons past the terminal proline before a stop codon, perhaps to provide a buffer zone. The full-length sequence was then translated in the presence of release factors and ribosome-recycling factors, releasing ribosomes that are not stably stalled through the stop codon. This may explain why the toe-printing experiment in Vázquez-Laslop et al. (2010) shows one position for stalled ribosomes on the mRNA. On the other hand, a similar experiment by Muto et al. (2006) shows additional bands, possibly suggesting two additional stalling positions downstream from Gly.

Experiments in Muto et al. (2006), using probes targeting peptidyl-tRNA Gly or tRNA Pro, show signs of stalling over either Gly or Pro. They additionally observe that the fraction of ribosomes stopping with a tRNA Pro increases markedly when the SecM construct was truncated to end at Pro or when a stop codon was inserted immediately after Pro (translated without release factors). These modifications eliminate all codons beyond Pro, consolidating all ribosomes that could have proceeded further onto the Pro codon. These results suggest that translation could proceed beyond the terminal proline and that ribosomes at the beginning of the stalling region may have the least chance of spontaneously resuming normal elongation.
SecM-Induced Stalling Is Stable over an Hour

Our bulk translation experiments showed Leu incorporation that is eight codons downstream of the stall region. In our intersubunit FRET experiments, 7% of the ribosomes elongated past the stall region of codons 18–22 during the short 5 min observation window. Although these ribosomes slow between codons 16–23, they return to normal rates of elongation once past codon 22 (Figure 1C). Perhaps by moving enough amino acids into the exit tunnel, some ribosomes spontaneously break the interactions between the nascent peptide and the exit tunnel. This is similar to the proposed N-terminal “tugging” mechanism for alleviation of stalling, but from the opposite direction (Butkus et al., 2003). Assuming that the time to clear the stall is a simplified exponential distribution and that 7% of ribosomes clear the stall in 5 min, the exponential lifetime of stalling is on the order of an hour. This is consistent with prior single-molecule experiments that observed GFP anchored with SecM disappearing with in ~2 hr (Uemura et al., 2008). Additionally, one bulk study recovers only 20%–30% of the ribosomes as stalled complexes after a 1 hr translation reaction (Evans et al., 2005), in agreement with 40% of the ribosomes remaining stalled based on our estimated lifetime. On the other hand, in vivo prokaryotic translation takes place over seconds to minutes; a stall lasting tens of minutes is effectively permanent, allowing for the downstream SecA to be expressed until the translocon relieves the stall. Mechanisms that are more severe may be too stable to relieve using biologically accessible processes.

The Dimension of Time in Stalling and Translation

Our work provides a dynamic framework to understand peptide-induced stalling in translation. Using single-molecule fluorescence techniques, we directly showed that SecM stalling unfolds within 1 min and over four codons, slowing elongation dynamics significantly over a region of five codons and lasting on the order of an hour. Stalling involves precisely positioned interactions between the exit tunnel and the nascent peptide, with each interaction setting the stage for the next. Although these effects are too transient for biochemical and structural studies to capture, they are nonetheless key elements linking stalling to elongation dynamics.

Although we have provided a broad canvas to explain translational stalling, the limitations of single-molecule fluorescence should be considered: limited access to shorter timescales (<100 ms) and the relatively narrow conformational and compositional resolution of individual signals. Therefore, some important questions that remain to be answered using other approaches include the contribution from other parts of the sequence and the mechanism for relieving stalled ribosomes. Full structural understanding of stalling will require a comprehensive collection of nascent chain-ribosome complexes that embrace the evolution of transient interactions required for SecM-induced stalling, which are not captured in the end state alone.

Our results highlight the utility of single-molecule methods that directly observe translation from multiple perspectives spanning the seconds to minutes timescale across multiple codons. By tracking elongation on natural mRNAs, we can directly probe many processes in elongation, including cofactor-dependent stall sequences, such as ErmCL (Johansson et al., 2014; Vazquez-Laslop et al., 2008), stronger stall sequences that are detrimental in vivo, and ribosomal frameshifting induced by specific mRNA sequences.

EXPERIMENTAL PROCEDURES

Reagents and Buffers for Translation Experiments

30S subunits with an inserted hairpin loop, where helix 44 of the 16S rRNA is surface-exposed on the 30S body, and 50S subunits with an inserted hairpin loop, where helix 101 of the 23S rRNA is surface exposed, were prepared as described (Dorywalska et al., 2005). Dye-labeled DNA oligos complementary to the hairpin loops were hybridized to the mutant subunits (Dorywalska et al., 2005; Marshall et al., 2008). The 30S subunit is labeled with Cy3B and 50S subunit with Black Hole Quencher 2, which is a FRET quencher (Chen et al., 2012b).

Translation factors (IF2, EF-Tu, EF-G, EF-Ts), S1, fluorescently labeled Cy5-EF-G, elbow-labeled tRNA Ph (Phe-(Cy5)5tRNA), and tRNA Lys (Lys-(Cy2)tRNA25) were prepared as described (Blanchard et al., 2004; Chen et al., 2013; Marshall et al., 2008). All experiments were conducted in a Tris polyox buffer consisting of 50 mM Tris-acetate (pH 7.5), 100 mM potassium chloride, 5 mM ammonium acetate, 0.5 mM calcium acetate, 5 mM magnesium acetate, 0.5 mM EDTA, 5 mM putrescine-HCl, and 1 mM spermidine. All experiments had GTP as the energy source and were performed at 22° C.

Total tRNAs from E. coli were purchased from Sigma-Aldrich, charged with a tRNA synthetase mixture purified from E. coli S30 extract, and then purified for single-molecule experiments (Blanchard et al., 2004; Lesley, 1995; Pavlov and Ehrenberg, 1996).

The SecM mRNA constructs used in this study contain (1) 21 bases at the 5’ end that hybridize to a 3’-biotinylated DNA oligo to immobilize the mRNA via neutravidin, (2) a 5’ UTR and Shine-Dalgarno sequence based on T4 bacteriophage gene 32, (3) a version of the SecM sequence, and (4) a spacer sequence. The SecM mRNAs were transcribed in vitro from plasmids purchased from GenScript in accordance with published protocols (McKenna et al., 2007). The gp32 mRNA is the gene 32 mRNA sequence from the T4 bacteriophage up to codon 225 with a hybridization sequence for the 3’ biotin DNA oligo added to the 5’ end. It is transcribed from a previously prepared plasmid (Blanchard et al., 2004). All mRNA sequences are listed in the Supplemental Information.

Bulk Translation Experiments

Two mixtures are made in preparation for the bulk translation experiments: ribosome mix and factor mix. Both mixtures contain the Tris-based polyox buffer with 1 mM GTP, and 1 mM ATP along with 3 mM phosphoenolpyruvate (PEP), 0.05 mg/ml pyruvate kinase, and 0.007 mg/ml myokinase for energy regeneration. The ribosome mix contains 500 nM 30S subunits, 500 nM 50S subunits, 1.5 μM mRNA, 600 nM S1, 2 μM IF2, and 1 μM initiator tRNA (Met-tRNA). The ribosome mix is first incubated without 50S subunits for 5 min at 37° C to form 70S preinitiation complexes (PIC) and then with 50S subunits for 5 min at 37° C to form 70S initiation complexes (IC). The factor mix contains 30 μM total E. coli tRNA, 20 μM of each amino acid (including the tritium labeled amino acid), 45 μM EF-Tu, 5 μM EF-Ts, 1 μM EF-G, and 15 μL of tRNA synthetase mixture for every 100 μl of total volume. The factor mix is incubated at 37° C for 15 min to charge the tRNAs and form ternary complex (Pavlov and Ehrenberg, 1996).

Immediately before the experiment, the two mixes are warmed to room temperature in a water bath for 2 min. For a 0 time point control, 10 μl of each mix is put into 40 μl of ice-cold 7.5% trichloroacetic acid (TCA). The reaction is started by mixing equal volumes of the two mixes. The mixed solution is then incubated in the room temperature water bath. At 15, 45, 120, 300, and 600s, 20 μl of the reaction is quenched in 40 μl of ice-cold 7.5% TCA. The precipitant in TCA is spun down in a table-top centrifuge at 13,200 rpm for 15 min at 4° C. The pellets are dissolved in 50 μl of 0.5 M KOH and incubated at room temperature for 15 min to release the peptides from the tRNA. To reprecipitate the released peptide, 500 μl of 5% TCA is added to each solution. The entire mixture is then trapped on glass fiber filters and washed with 5 ml of
5% TCA. The glass fiber filters are then placed into scintillation vials and counted in a Beckman scintillation counter with 5 ml of Cytoscint scintillation cocktail (MP Biomedicals) for tritium activity.

Intersubunit FRET Experiments

30S preinitiation complexes (PICs) were formed as described previously (Marshall et al., 2008; Tsai et al., 2013). To form 30S PICs, 0.25 μM Cy3B-30S, preincubated with stoichiometric S1, 1 μM IF2, 1 μM fMet-tRNA(Met), and 1 μM mRNA hybridized with stoichiometric 3’ biotin DNA oligos, and 4 mM GTP, were incubated at 37°C for 5 min in the Tris-based polyimix buffer.

Before use, we preincubate a SMRT Cell V3 from Pacific Biosciences, a zero-mode waveguide (ZMW) chip containing 150,000 ZMW wells (Levene et al., 2003), with a 1 mg/ml Neutravidin solution in 50 mM Tris-acetate (pH 7.5) and 50 mM KCl at room temperature for 5 min. The cell is then washed with Buffer 6 (50 mM Tris-acetate [pH 7.5], 100 mM potassium chloride, 5 mM ammonium acetate, 0.5 mM calcium acetate, 5 mM magnesium acetate, and 0.5 mM EDTA). To keep the cell surface wet, 40 μl of Buffer 6 is left in the cell. We then dilute the 30S PICs with our Tris-based polyimix buffer containing 1 μM IF2 and 4 mM GTP down to 25-75 nM PIC concentration, depending on the specific mRNA used. The diluted PICs are then loaded into the SMRT cell at room temperature for 3 min to immobilize the 30S PICs. We wash away unbound material with our Tris-based polyimix buffer containing 1 μM IF2, 4 mM GTP, 1 mM Trolox (to stabilize Cy5 photophysics), and a PCA/PCD oxygen-scavenging system (2.5 mM 3,4-dihydroxybenzoic acid and 250 nM protocatechuate deoxygenase) (Atkin et al., 2008).

After washing, 20 μl of the washing mix is left in the cell to keep the surface wet and to remove oxygen in the liquid. We then form ternary complexes between total charged E. coli tRNAs and EF-Tu(GTP) as described previously (Marshall et al., 2008).

Before an experiment, the cell is loaded into a PacBio RS sequencer modified by Pacific Biosciences for single-molecule fluorescence experiments (Chen et al., 2014). To begin the elongation experiment, the instrument illuminates the SMRT cell with a green laser and then immediately delivers 20 μl of a delivery mixture containing 200 nM BHQ2-50S, 1 μM IF2, 160–320 nM EF-G, 2.5–5 μM total tRNA ternary complexes, 4 mM GTP, 1 mM Trolox, and the PCA/PCD oxygen-scavenging system in our Tris-based polyimix buffer onto the cell surface.

Static Intersubunit FRET Experiments with Puromycin

The SMRT V3 Cells for the experiments are prepared the same as our intersubunit FRET experiments. We first preform staid 70S complexes by mixing the following: 250 nM Cy3B-30S, 500 nM Cy5-50S, 1 μM IF2, 1 μM fMet-tRNA(Met), 2.5 μM tRNA, 1 μM EF-G, 5 μM total tRNA ternary complexes, and 4 mM GTP in our Tris-based polyimix buffer. The solution is incubated at 37°C for 10 min. After diluting the 70S mix with 4 mM GTP, 1 mM Trolox, and the PCA/PCD oxygen-scavenging system in our Tris-based polyimix buffer, the ribosomes are immobilized onto the SMRT cell. Unbound materials are washed away with the same dilution buffer, and the cell is then observed in the dilution buffer with only green laser illumination.

Translation Experiments with Labeled tRNATM and/or tRNA^{SH}

Translation experiments using labeled tRNATM are performed as our intersubunit FRET experiments with the following differences. We prepared a total tRNA mixture charged with all amino acids, except Phe (total tRNA APh, and formed ternary complexes with it. Ternary complexes with Phe-(Cy5) tRNA^{SH} are separately formed. The delivery mix contains 200 nM 50S, 1 μM IF2, 160-320 nM EF-G, 2.5–5 μM total tRNA APh ternary complexes, 200 nM Phe-(Cy5)tRNA^{SH} ternary complexes, 4 mM GTP, 1 mM Trolox, and the PCA/PCD oxygen-scavenging system in the Tris-based polyimix buffer. During the experiment, the SMRT Cell is illuminated with both a green and a red laser.

Experiments using both Cy5-labeled tRNATM and Cy2-labeled tRNA^{SH} are set up the same way, with the following difference in the delivery mix: 200 nM 50S, 1 μM IF2, 320 nM EF-G, 5 μM total tRNA APh, 200 nM Phe-(Cy5)tRNATM, 200 nM Lys-(Cy2)tRNA^{SH}, 4 mM GTP, 1 mM Trolox, and the PCA/PCD oxygen-scavenging system in the Tris-based polyimix buffer. During the experiment, the ZMW chip is illuminated with a red, a green, and a blue laser.

Instrumentation for Observing Fluorescence from ZMW Wells and Data Analysis

All single-molecule fluorescence experiments, except for those involving Cy2-labeled tRNA^{SH}, were conducted using a commercial PacBio RS sequencer that Pacific Biosciences modified to collect single-molecule fluorescence intensities from individual ZMW wells about 130 nm in diameter in four different dye channels corresponding to Cy3, Cy5, Cy5, and Cy5.5 (Chen et al., 2014). The RS sequencer has two lasers for excitation at 532 and 632 nm. ZMW technology has been used to conduct single-molecule experiments (Tsai et al., 2012; Uemura et al., 2010) to observe single-molecule fluorescence at high labeled ligand concentrations (>50 nM) and to observe numerous molecules simultaneously (Levene et al., 2003). Experiments using both Cy5-labeled tRNATM and Cy2-labeled tRNA^{SH} were performed on a research ZMW microscope with an additional 488 nm blue laser, as described previously (Uemura et al., 2010). In all experiments, data were collected at ten frames per second (100 ms exposure time) for 5 min (300 s or 3,000 frames). On the RS instrument, the power of the green laser is 0.48 μW/μm² and the red laser is at 0.22 μW/μm² when on. The laser power on the research instrument is 0.5 μW/μm² for all three lasers.

Data analysis for all experiments is conducted with MATLAB (MathWorks) scripts as used in previous experiments (Chen et al., 2013; Tsai et al., 2013). Traces from the ZMW wells are filtered based on fluorescence intensity, fluorescence lifetime, and the change in intensity when the laser is turned on. Filtered traces exhibiting intersubunit FRET and/or single-molecule binding signals are then selected for data analysis. The FRET states are assigned as described based on a hidden Markov model-based approach and visually corrected (Atkin and Puglisi, 2010; Tsai et al., 2013). EF-G and tRNA binding signals are manually assigned. All lifetimes were fitted to a single-exponential distribution using maximum-likelihood parameter estimation.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Information and three figures and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2014.04.033.

AUTHOR CONTRIBUTIONS

A.T. and G.K. conducted the experiments and data analysis; M.J. and J.C. prepared and provided experimental materials; J.C. provided technical expertise with instrumentation on the RS sequencer; J.D.P. designed the experiments; and all authors discussed the results and wrote the manuscript.

ACKNOWLEDGMENTS

This work was supported by grants from the NIH (GM51266 and GM099687) to J.D.P. and Wenner-Gren Foundations, Stockholm (to M.J.). We thank Alexey Petrov (Stanford) and Sean O’Leary (Stanford) for valuable discussions. J.D.P. is a consultant of Pacific Biosciences, a company commercializing sequencing technologies.

Received: January 20, 2014

Revised: March 27, 2014

Accepted: April 17, 2014

Published: May 15, 2014
REFERENCES

Supplemental Information

The Dynamics of SecM-Induced Translational Stalling

Albert Tsai, Guy Kornberg, Magnus Johansson, Jin Chen, and Joseph D. Puglisi
Supplemental Information

Supplemental Data

Sequences of mRNAs used in this study, Related to “Reagents and buffers for translation experiments” under Experimental procedures.

Hybridization site to 3’ biotin DNA oligo:
CAACCUAAACUUACACACGC

T4 bacteriophage gene 32 Shine-Dalgarno sequence and spacer before start codon:
CCCGGUAAAAGGAAAAA

The 2 sequences above are arranged sequentially from 5’ to 3’ in all mRNA constructs and collectively referred to as 5’ UTR

3H optimized SecM:
5’ UTR-
AUG UUU AGU ACG GCC GUU UGG AUU UCA CAA GCC CAG GGU AUC CGU GCA GGU CCG GCA AUG UGG AAA AGU ACG GCC CGU GCA GAA AGU CUC UGA

3H optimized R15A:
5’ UTR-
AUG UUU AGU ACG GCC GUU UGG AUU UCA CAA GCC CAG GGU AUC GCU GCA GGU CCG GCA AUG UGG AAA AGU ACG GCC CGU GCA GAA AGU CUC UGA

SecM (normal):
5’ UTR-
AUG UUU AGU ACG CCG GUU UGG AUU UCA CAA GCC CAG GGU AUC CGU GCA GGU CCG CCG

-33-codon spacer

33-codon spacer (from T4 gene 32):
AUG UUU AAA CGU AAA UCU ACU GCU GAA CUC GCU GCA CAA AUG GCU AAA CUG AAU GGC AAA GGU UUU UCU UGU UCU GAA GAU AAA GGC GAG UGG AAA CUG GC

+10:
5’ UTR-
AUG UCU UCU GAA GAA AAA GGC GAG UGG AAA CUG UUU AGU ACG CCG GUU UGG AUU UCA CAA GCC CAG GGU AUC CGU GCA GGU CCG CCG
-33-codon spacer

\[\Delta^{1-9}: \]
5’ UTR-
CAA GCC CAG GGU AUC CGU GCA GGU CCG CCG
-33-codon spacer

\[\text{R}15\text{A:} \]
5’ UTR-
AUG UUU AGU ACG CCG GUU UGG AUU UCA CAA GCC CAG GGU AUC GCU GCA GGU CCG CCG
-33-codon spacer

\[\text{P}18\text{A:} \]
5’ UTR-
AUG UUU AGU ACG CCG GUU UGG AUU UCA CAA GCC CAG GGU AUC CGU GCA GGU GCG CCG
-33-codon spacer

\[\text{SecM 3’ truncation:} \]
5’ UTR-
AUG UUU AGU ACG CCG GUU UGG AUU UCA CAA GCC CAG GGU AUC CGU GCA GGU CCG CCG AUG UUU

\[\text{gp32:} \]
5’ UTR-
AUG UUU AAA CGU AAA UCU ACU GCU GAA CUC GCU GCA CAA AUG GCU AAA
CUG AAA GGC AAU AAA GGU UUU UCU UCU GAA GAU AAA GGC GAG UGG AAA
CUG AAA CUC GAU AUU GCG GGU AAC GGU CCG CCG AUG UUU
GGU UUC AAG AAA AAU GGU AAA UGG AUU AUU GAU ACA UGU UCA UCU ACC
CAU GGU GAU UAC GAU UCU UGC GCA GUA UGU AAA UAC AGU AAA AAU CAC
GAU CUA UAC AAC ACU GAC AAU AAA GAG UAC AGU CUU GGU AAA CGU AAA
ACU UCA UAC UGC GUC AAC AUC CAA GUA GUA AAA GAC CCA GCU GCU CCA
GAA AAC GAA GGU AAA GUA UUU AAA UAC CGC UUU GGU AAA UGG
GAU AAA AAC AAU GCA AUG AUU GGU GGU GAU GGU GAA AUG GUU GAA ACU
CCA GGU GAU GUU ACU UGU CCG UGG GAA GGU GCU AAC UUU GUA CUG AAA
GUU AAA CAA GGU UCU GGA UUU AGU AAC UAC GAU GAA UCU AAA UUC CUG
AAU CAA UCU GCC AUU GAC GAA GCU UCC UUC CAG AAA GAA
CUG UUC GAA CAA AUG GUU GAC CUU UCU GAA AUG ACU UCU AAA GAU AAA
UUC

\[6(\text{FK):} \]
5’ UTR-
AUG UUC AAA UUC AAA UUC AAA UUC AAA UUC AAA UAG UUU UUU UUU UUU
Figure S1
Figure S1. Bulk translation experiments show decreased elongation rates over SecM and translation on gp32 mRNA proceeds efficiently and responds correctly to antibiotic control experiments, Related to Figure 1.

(A) Tracking the progress of translation elongation in bulk using tritium-labeled amino acids for Phe2 (red), Lys22 (green), and Leu30 (blue) shows prolonged delays between the incorporation of the three amino acids on the SecM mRNA. (B) Incorporation of the amino acids on the R15A readthrough mRNA are closer together. The y-axes are the intensity of the tritium signal normalized to the maximum cpm detected for each amino acid and the error bars represent the normalized variance of three experiments. The data was fit to single exponential functions for a rough estimation for the rate of. The exponential time constants (with s.e.m. errors) are for SecM: 100 ± 11 s (Phe), 150 ± 19 s (Lys), and 430 ± 90 s (Leu) and for R15A: 65 ± 7 s (Phe), 85 ± 12 s (Lys), and 100 ± 16 (Leu). (C) Translation on gp32 is efficient (n = 244), with 30% of ribosomes surviving past codon 30. (D) The time to translate each codon remains uniformly short on gp32. (E) Spectinomycin (n = 120) reduces translation efficiency (F) due to significantly increased rotated state lifetimes, consistent with its function as a translocation blocker. (G and H) Erythromycin (n = 197) inhibits translation of peptide beyond 6~10 amino acids long. Lifetimes are fitted to single-exponential distributions and errors are s.e.m.
Figure S2
Figure S2. The truncated SecM mRNA suppresses translation beyond codon 20 and tRNA transit experiments with labeled Phe and Lys tRNA show reduced translation rates and translation beyond the terminal proline, Related to Figure 3.

(A) An intersubunit FRET experiment on a SecM mRNA truncated after Phe21 \((n = 227)\) shows suppressed translation beyond codon 20. (B) The time to translate each codon remains similar to the normal SecM sequence. (C) Translation on both the SecM \((n = 209)\) and R15A \((n = 234)\) mRNAs show significant fractions of ribosomes incorporating both Phe2 and Phe21. (D) Incorporation of Lys22 is significantly lower on SecM, and incorporation of Lys24 is non-existent. R15A, however, shows clear incorporation of both Lys22 and Lys24. (E) The dwell times of both Phe21 and Lys22 are long on the SecM mRNA whereas dwell times of all tRNAs are short on R15A. (F) The translation times between Phe2, Phe21, Lys22, and Lys24 are in concordance with their distances and intersubunit FRET experiments. Lifetimes are fitted to single-exponential distributions and error bars represent s.e.m.
Figure S3. Arg is specifically required at codon 15 to slow peptide bond formation, Related to Figure 5.

(A) Replacing the positively charged Arg15 with a negatively charged Glu of a similar size does not restore stalling on the R15E mutant \((n = 200)\). (B) The lifetimes over each codon are similar to the R15A mutant: a modest slowdown in the rotated state between codons 17~21 but no increases in the non-rotated state lifetimes at all. (C) Lys with a positive charge could not restore stalling on R15K \((n = 196)\). (D) The time to translate each codon remains the same as R15A. (E) Compared to the 6(FK) mRNA \((n = 117)\), ribosomes stalled on the SecM mRNA \((n = 90)\) are resistant to peptide bond cleavage at 500 µM puromycin. All lifetimes are fitted to single-exponential distributions and all error bars represent s.e.m.